Supervised Learning: the Probabilistic Approach
K Nearest Neighbors Method
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2-class classification with KNN
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import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

data_dir = ’../Data/’

D = np.loadtxt(data_dir + ’la_3.txt’, comments=’%’)
X = D[:, 0:2]

y D[:,2] .astype(’int’) # convert to integers

n = len(y)

cmap_bold = [’darkblue’, ’darkorange’]

Group_name = np.array([”Group_A”, ”Group.B”])

plt.figure(figsize=(8, 6))
sns.scatterplot(x = X[:, 0], y = X[:, 1], \
hue = Group_namel[y], palette = cmap_bold, \
alpha = 0.9, edgecolor = ”black”)
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# KNN learning

K = 15

intrvl = 0.2 # grid interval

Xx_min, x_max = X[:,0].min() - 1, X[:,0].max() + 1
y_min, y_max = X[:,1].min() - 1, X[:,1].max() + 1

XX, YY np.meshgrid(np.arange(x_min, x_max, intrvl), \
np.arange(y_min, y_max, 0.1)) # grid points: matrices
Z = np.zeros(xx.size) # a vector for KNN predictions

for i in range(xx.size)
tmp = np.tile([xx.ravel()[i], yy.ravel()[i]], (n, 1))
d = np.linalg.norm(tmp - X, axis = 1) # n distances
idx = np.argsort(d) # sorting K distances
z[i] = np.mean(y[idx[:K]]) # average K sorted y-values

z = [0 if i < 0.5 else 1 for i in Zz]
sns.scatterplot(x = xx.ravel(), y = yy.ravel(), size = 2,\
markers = ’.’, palette = cmap_bold, hue = z, \
alpha = 0.3, legend = False)
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Z = np.reshape(z, xx.shape) # reshape z to a matrix
plt.contour(xx, yy, Z)
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K = 15

weights = ’uniform’

Knn = neighbors.KNeighborsClassifier (K, weights = weights)
Knn.fit(X, y)

trainingErr = 1 - Knn.score(X, y)

X_min, x_max = X[:,0].min() - 1, X[:,0].max() + 1

y_min, y_max X[:,1].min() - 1, X[:,1].max() + 1

XX, Yy = np.meshgrid(np.arange(x_min, x_max, 0.1),\
np.arange(y_min, y_max, 0.1))

z Knn.predict(np.c_[xx.ravel(), yy.ravel()])

z z.reshape(xx.shape)

cmap_light = ListedColormap([’cornflowerblue’, ’orange’])
plt.contourf(xx, yy, Z, cmap = cmap_Llight, alpha = 0.3)
plt.title(’Training.error.=.%.4f_for_K.=.%i’ % (trainingEr

r,K))
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Training error = 0.1550 for K = 15

e 00
3 10
% u a oy
8 g 9;33% #
g 8 "3
2 s ®g® s w8 g
o ¢ % ‘? % g?@m .
- 2 n®
sﬁ ° %ﬁgﬂ e u G # -4 E‘t:3
1 - *:lmgw;:%;. oy .l*. .l W e
= = o 82 e LY
~ Hhge [ B L
> s ® e m% e
o ®_ e
0 o w2
] = %..2
s o ® o ‘% C
. e p o
-1 . oe? ¢
‘e
- .
-2 L ]
3 -2 ) 0 1 2 3 I 5
X1

3: KNN ZEf3E] (K = 15) BEE LR ERVRREIR

#0 B 3. FERIE KNN H7A = (SR E R BERE ST » 55 BT AR RCERRIE AT T
Al o B P AR A OB ER S S BRI T A R

0.5 ] [2] {1]

y 2 = y M3 =
—0.2 2 2

2 0.3 10 1 0
21: )22: 723:

0.3 0.5 01 0 1

BELH AN BB ny = 200, ne = 200, ng = 200 o

M1 =

4 23 KNNAE K = 5 HYRM o B ITEEAAIR e SLE A S EESEERE - 75
A A - D IEES UERNER - R REE O BEE TR ~ B RN —
Y ~ BRHA SR EAERY... -

550 A IR B Y pR B AR g A AR I o R AT DUE RS R AY
U WA AR U« E AR Bl A 25 8 8 RE AV BFAH BRI Y e B $4 By
mvn_multiclass_data - [ (EkEFE AT FEAFE=(% 5 Lib_GenData.py °
MRS . . /Lib/ o AREHIIEF AN SCHUFEE TR (path) » 201 R HIFEZCHE
ATRITT » A BE B &55E = AT RIS % L

import sys
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from Lib_GenData import mvn_multiclass_data

[200, 200, 200] # sample size for each group

mean = np.array([[0.5, -0.2], [2, 2], [-1, 2]1])

= np.array([[2.0, 0.3], [0.3, 0.5], \
[1L.0, 0.], [6., 1.], [1.0, 0.], [0., 1.]1)

X, y = mvn_multiclass_data(mean, cov, n)

3-Class classification (k = 5, weights = "uniform’}
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