
淺度機器學習：類神經網路

December 12, 2022

類神經網路（Aritficial Neural Network, ANN）風行於 90年代，帶動一波人工智
慧學習（AI）的熱潮。不過幾年的功夫，便被看破手腳，於是逐漸退潮並匿跡
於學術圈。並不是類神經網路不好，而是遇到實務面的瓶頸。當資料大，變數

多時，電腦軟硬體的執行能力讓人卻步。另一方面，類神經網路雖然具備學習

的「智慧」，但在開發測試的過程中，處處需要人工的介入，加上軟硬體的支援

不力，常常搞得人仰馬翻，逐漸失去信心。

消失的人工智慧在電腦軟硬體逐步提升後，終於達到實務面能接受的效率，

尤其配合影像處理的技術，在圖形辨識（Pattern Recognition）的領域上異軍突
起，獲得廣大的注視，再度引領風騷，甚至成為深度機器學習（Deep Learning）
的主力。本章介紹類神經網路的概念，並以 sklearn.neural_network及
neurolab套件為工具，以幾個典型的範例揭開類神經網路的面紗。

本章將學到關於程式設計

⟨本章關於 Python的指令與語法⟩
指令：

numpy: outer, tile
matplotlib.pyplot:imshow, surface
scipy.io: loadmat
sklearn.neural_network:MLPRegressor, MLPClassifier
sklearn.model_selection:train_test_split
sklearn.metrics:mean_squared_eror, plot_confusion_matrix
neurolab:newff

1

1 背景介紹

1.1 前饋式（Feedforward）類神經網路的原理

圖 1展示具備一個隱藏層的典型前饋式類神經網路，1其中幾個須留意的數字為

左邊輸入端（Input）標示為 p個變數個數（圖中 p = 14），中間隱藏層（Hidden
Layer）有 q 個神經元（圖中 q = 10）及最右邊的輸出層（Output Layer），共有
r個輸出變數（圖中 r = 3）。輸入與輸出變數的個數 p, r依問題的結構而定，譬

如下一節的機器手臂的範例中 p = 2代表平面座標位置，而 r = 2代表機器手臂

的兩個角度。值得一提的是中間的隱藏層與輸出層，特別是隱藏層的結構與所

含的神經元數量 q。q越大，代表輸出與輸入之間的關係越複雜，從數學關係的

角度來說，便是彼此間的非線性程度越高。

圖 1: 具備一個隱藏層的典型前饋式類神經網路

假設輸入端的 p 個變數表示為 x1, x2, · · · , xp，輸出端的 r 個變數表示為

ŷ1, ŷ2, · · · , ŷr，則前饋式類神經網路的輸出與輸入間的數學關係寫成

ŷk =

q∑
i=1

w2
kig

(
p∑

j=1

w1
ijxj + b1i

)
+ b2k, 1 ≤ k ≤ r (1)

其中函數 g(·)可以選擇為（−1 ≤ g(z) ≤ 1）

g(z) = c1
1− e−c2z

1 + e−c2z
(2)

函數 g(z)的長相便如圖 1的隱藏層所繪製的函數圖。函數 g(z)也可以用在輸出

層，以增加複雜度，不過通常使用如圖 1的線性函數 y = x，也就是圖 1的輸出
層所繪製直線方程式。式 (1)中的 w1

ij 與 b1i 代表第一個隱藏層的第 i個神經元與

第 j 個輸入的權重係數（Weightings）與位階係數（Biases）。同樣地，w2
ki 與 b2k

則是第二層（在此為輸出層）的第 k個神經元與前一隱藏層的第 i個輸出的權重

係數與位階係數。

類神經網路根據已知的輸入與輸出資料 xj(n)與 yk(n)，調整係數 w1
ij, w

2
ki, b

1
i 與

b2k，使得真實資料 yk(n)與類神經網路輸出資料 ŷk(n)的誤差為最小。假設共有

1本圖從MATLAB輸出

2

N 筆真實資料，則所謂類神經網路的訓練階段，寫成多變量函數的最小值問題，

即

min
Ω

e(Ω) (3)

其中誤差函數

e(Ω) =
N∑

n=1

r∑
k=1

(yk(n)− ŷk(n))
2

=
N∑

n=1

r∑
k=1

(
yk(n)−

q∑
i=1

w2
kig

(
p∑

j=1

w1
ijxj + b1i

)
+ b2k

)2

(4)

其中參數 Ω = {w1
ij, w

2
ki, b

1
i , b

2
k}i=1,2,··· ,q;j=1,2,··· ,p;k=1,2,··· ,r，共 pq + qr + q + r 個參

數。若以圖 1的類神經網路架構（p = 14, q = 10, r = 3）為例，式 (3)的誤差函
數 e(Ω)的變數共 183個。因此類神經網路可視為一個非常複雜、非線性程度很
高到函數，能將輸入（X）與輸出（Y）的關係配適的很完美。

前文說到類神經網路曾在 90年代刮起一陣旋風，雖然引起各界競相追逐並應用
在許多領域，但如式 (3)的高維度（變數多）最小值的計算問題卻是瓶頸。當
輸入變數（p）越多，所選擇的隱藏層神經元數量（q）也越多時，若要求訓練

的很完美（e(Ω)越小），不可避免地需要更大的計算量，而造成計算時間過長，

讓研發人員望之卻步。諸如此類的困擾隨著電腦軟硬體的提升，與演算法的成

熟，已逐漸將類神經網路的學習優勢拉到「量產」的程度了，帶起新一波的人

工智慧風潮，譬如機器學習中的「深度學習」便是充分利用了類神經網路的配

適（fitting）能力。

另一個阻礙機器學習進程的因素是實用性。固然類神經網路能將輸入與輸出透

過其高度的非線性函數配適到完美的境地，但對訓練外的輸入測試資料，其輸

出表現並不如預期，中間還牽涉到隱藏層數、隱藏層的神經元數量及訓練程度

都非常有關係。於是過多的測試與過長的測試時間，終於讓類神經網路的實用

價值受到質疑。下一節的機器人手臂的範例也會展示不同的訓練過程將導致不

同的測試結果。

2 機器人手臂的範例

2.1 解「逆運動方程式」（Inverse Kinematic Equations）

圖 2是一個低階自由度（DOF, Degree of Freedom）的機械手臂，有兩截手臂，
長度分別為 l1 = 20, l2 = 10。兩截手臂依據兩個角度 θ1, θ2 的改變，可以使手臂

3

最前端的位置 (x, y)覆蓋如圖 3第一象限的陰影區域，也就是手臂前端的指頭或
鋏子可以碰觸到的地方。

0 5 10 15 20 25 30
0

5

10

15

20

25

30

l
1

l
2

1

1

2

圖 2: 兩截式機械手臂

機械手臂藉由調整兩個角度 θ1, θ2 讓前端的鋏子移動到目的地 (x, y)。也就是給

定 (x, y)，必須計算出 θ1, θ2 這兩個角度，這便是逆運動方程式的計算。因為維

度低，角度少，因此這個逆運動方程式有解析解，如式 (6)的 IKE

FKE :

x = l1 cos(θ1) + l2 cos(θ1 + θ2)

y = l1 sin(θ1) + l2 sin(θ1 + θ2) (5)

IKE :

θ2 = cos−1

(
x2 + y2 − l21 − l22

2l1l2

)
θ1 = tan−1

(y
x

)
− tan−1

(
l2 sin(θ2)

l1 + l2 cos(θ2)

)
(6)

當維度升高或機械手臂的角度變多之後，解析解變得不可能，必須尋求演算法

的幫忙，找到近似解。在此，我們捨棄式 (6)的解析解不用，轉而藉由類神經網

4

路的學習方式，在機器手臂能到達的範圍內找一些位置當作訓練資料（如圖 3
的 +字位置），讓類神經網路透過這些訓練資料找到輸出角度與輸入位置的關
係，再來看看學習過後，當面對新的位置資料 (x, y)時，是否能準確輸出如式

(6)正確的角度 (θ1, θ2)？

0 5 10 15 20 25 30

0

5

10

15

20

25

30

圖 3: 兩截式機械手臂所及範圍與訓練資料分布點

本範例採兩層的前饋式架構（Two Layer Feed-Forward Neural Network），根據前
述機械手臂的設計，類神經網路的輸入是座標位置 (x, y)，輸出為機器手臂的兩

個角度 (θ1, θ2)，架構如圖 4，其中隱藏層先試探性地採用 10個神經元。2接著

可以嘗試提高隱藏層的數量，並觀察輸出的擬合值與真實值的差異，直到某個

適合的數量為止。譬如圖 5展示隱藏層 10, 20, 40與 80時的真實位置（+）與擬
合位置（o）的差異，並計算出均方根誤差（Root Mean Squared Error, rmse)值。
3從圖中可以看出當隱藏層數量增加時，均方根誤差隨之下降；當隱藏層數量提

升至 80時，均方根誤差反而增加了。不過，就類神經網路訓練而言，訓練資料
所產生的誤差僅供參考，仍需參照測試資料的誤差而定。

圖 4: 兩層的前饋式類神經網路架構

2類神經網路架構只含一個隱藏層，其中的神經元數量取決於輸入與輸出兩端的資料型態、
資料量與問題本身的複雜程度。一般來說神經元數量必須通過若干次的訓練與測試方能決定，
常常是件瑣碎無趣的工作。

3rmse =
√

1
2N

∑N
i=1(θ̂1(i)− θ1(i))2 + (θ̂2(i)− θ2(i))2

5

0 5 10 15 20 25 30
x

−5

0

5

10

15

20

25

30

y

(a)隱藏層 10, rmse = 0.0455

0 5 10 15 20 25 30
x

0

5

10

15

20

25

30

y

(b)隱藏層 20, rmse = 0.0346

0 5 10 15 20 25 30
x

0

5

10

15

20

25

30

y

(c)隱藏層 40, rmse = 0.0210

0 5 10 15 20 25 30
x

0

5

10

15

20

25

30
y

(d)隱藏層 80, rmse = 0.0235

圖 5: 隱藏層數量與擬合值的準確度

圖 5的類神經網路訓練採 sklearn套件中的 neural_network.MLPRegressor
指令，其中 MLPRegressor 代表 Multi-Layer Perceptron Regressor。而 Multi-
Layer Perceptron 便是像圖 1 的多層神經元（感知器 perceptrons）的架構，Re-
gressor代表其輸出/輸入的關係同於迴歸模型的概念（輸出與輸入皆是連續型
資料，非類別型）。4下列程式碼呈現了訓練資料的準備（含輸出與輸出）與

MLPRegressor的使用方式。

import numpy as np
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error

Preaper training data (input)
l1, l2 = 20, 10
t = np.linspace(0, np.pi/2, 20)

4另有 neural_network.MLPClassifier套件適合做分群。

6

l = np.arange(l1 − l2 + 1, l1 + l2 + 1, 2)
X = l.reshape(−1,1) @ np.cos(t.reshape(1,−1))
Y = l.reshape(−1,1) @ np.sin(t.reshape(1,−1))

prepare training data (output)
theta2 = np.arccos((X.ravel()**2 + Y.ravel()**2 −\

l1**2 − l2**2)/(2*l1*l2))
theta1 = np.arctan(Y.ravel()/X.ravel()) − \

np.arctan(l2*np.sin(theta2)/(l1+l2*np.cos(theta2)))

setup for ANN training
InputX = np.c_[X.ravel(), Y.ravel()]
OutputY = np.c_[theta1, theta2]
hidden_layers = (10,)
solver = ’lbfgs’ # the best for robot data
solver = ’sgd’
solver = ’adam’
mlp_reg = MLPRegressor(max_iter = 8000, solver = solver,

hidden_layer_sizes = hidden_layers, verbose = False,
activation = ’logistic’, # default activation = ’relu’
tol=1e−6, random_state = 0)

mlp_reg.fit(InputX, OutputY) # Training ...
OutputY_hat = mlp_reg.predict(InputX) # Calculate fitted values
theta1_hat, theta2_hat = OutputY_hat[:,0], OutputY_hat[:,1]
convert to (x,y) positions
x_hat = l1 * np.cos(theta1_hat) + \

l2 * np.cos(theta1_hat+theta2_hat)
y_hat = l1 * np.sin(theta1_hat) + \

l2 * np.sin(theta1_hat+theta2_hat)

rmse = np.sqrt(mean_squared_error(OutputY, OutputY_hat))
print(’Root Mean square error is {:.4f}’.format(rmse))

上述指令中 MPLRegressor 宣告物件並設定該物件所需的參數。其中
max_iter=8000 與 tol=1e-6 是一般演算法具備的選項，都是指定演算
法停止的條件。一般演算法屬於遞迴式的做法，用一個迴圈不斷地更新估計值，

而 max_iter = 8000代表最多的迴圈數，即使尚未達收斂條件，也強制停
止；tol=1e-6代表當目標函數（或損失函數 Loss function）隨著遞迴不再明顯
改變（變化量小於 tol），則停止繼續遞迴，表示估計值差不多不再改變了，再
繼續進行下去，進步有限，於是停止演算。

除了 max_iter=8000與 tol=1e-6之外，還有 max_fun,與 early_stopping
等停止條件。讀者可以試試看，其中 early_stopping牽涉到將訓練資料再

7

分出一部分做為驗證及停止演算法之用（Validation）。一個堪稱好的演算法指
令，都會讓使用者介入演算法的運作細節，譬如 learning_rate, momen-
tum等。另外，設定 verbose=True可以列印出每個迴圈的演算進度。這些
參數常扮演關鍵角色，讓演算法走到正確的位置（不會在中途停止）。

此外，運用演算法指令最重要的選項，便是選擇一個適合的演算法，譬如，圖 5
選擇 solver = ’lbfgs’即著名的 LBFGS演算法。MPLRegressor另提供
adam與 sgd兩種演算法，各有其優缺點，讀者最好都去試試看。最後是類神
經網路中使用的非線性函數 activation，在此使用最經典的 logistic函
數，另有 relu函數常用於深度學習的系統。如果想知道所用的 MPLRegres-
sor的所有參數，可以用指令 print(mlp_reg.get_params())列印出所
有參數與設定。

訓練後的類神經網路便可根據新的輸入資料，直接生成所需要的輸出資料。譬

如，給予一個新的座標位置，就能迅速的計算出機器手臂所需要的角度。此時

通常利用大量的測試資料（與訓練資料不同）所生成的角度與正確值相比，如

果誤差在可接受的範圍內，則接受這個神經網路做為未來機器手臂的角度生成

器（取代複雜或甚至不可能推演的逆運動方程式）。若不符使用的準確度，則必

須調整後再測試。

2.2 訓練與測試資料的生成

圖 5的訓練資料並非最理想的選擇，譬如，在半徑比較小的內側，資料較為密
集，也就是訓練資料的選擇不夠均勻，當資料量不足時，這個問題必須被正

視。

圖 6展示另一種「看起來」較為均勻散佈的資料點。其作法，首先在正方形的
區域產生均勻的亂數，再從中取位於第一象限內的所有點，最後挑選那些落在

半徑為 10與 30的圓之內的亂數，這個方式也許不符合學理上的公平抽樣，但
勉強可用。參考程式如下：

radius_in, radius_out =10, 30
X = uniform.rvs(loc = 0, scale = radius_out, size=(N, 2))
d = np.sqrt(X[:, 0] ** 2 + X[:, 1] ** 2)
Idx = (d < radius_out) & (d > radius_in)
TrainData = X[(d < radius_out) & (d > radius_in), :]

其實在圓內或球體內（甚至更高度空間），產生均勻亂數的方式已經很普遍，圖

7呈現 1000個亂數均勻散佈在圓內。參考的程式碼如下。

8

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

圖 6: 均勻落在扇形區的亂數

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

圖 7: 均勻落在圓形區域的亂數

import numpy as np
from scipy.special import gammainc

def randsphere(center, radius, n_per_sphere):
”””generate random numbers in a n−dimensional sphere
i.e. in 2D, it is in a circle; in 3D, it is in a ball

9

”””

r = radius
ndim = center.size
x = np.random.normal(size=(n_per_sphere, ndim))
ssq = np.sum(x ** 2, axis=1)
fr = r * gammainc(ndim / 2, ssq / 2) ** (1 / ndim)\

/ np.sqrt(ssq)
frtiled = np.tile(fr.reshape(n_per_sphere, 1), (1, ndim))
p = center + np.multiply(x, frtiled)
return p

p = randsphere(np.array([0, 0], 30, 1000)

其中函數 randsphere 便是用來產生高度空間球體內均勻散佈的點，其
中第一個參數 center 代表中心點位置，其大小（center.size）也是實
際空間的維度，radius代表半徑，n_per_sphere是樣本數；所以 rand-
sphere(np.array([0, 0], 30, 1000) 代表在半徑 30 的圓內均勻產生
1000 個亂數。接著經過適度的「剪裁」，取得機器手臂的範圍空間。程式碼
如：

p = p[(p[:,0] > 0) & (p[:,1] > 0), :] # 第一象限
d = np.sum(p**2, axis=1)
p = p[d >= radius_in**2, :] # 扇形內

以下利用 randsphere生成資料，並依 7:3比例分成訓練與測試資料兩組。訓
練資料用來訓練 ANN網路，接著以測試資料檢驗訓練結果。圖 8展示訓練資
料的位置（+字符號）、測試資料（o符號）與預測資料（*符號）的關係位置。
其中隱藏層設為 40，總樣本數分別 213與 447。5測試資料（o符號）與預測資
料（*符號）在某些位置有明顯的落差。此時可以考慮重新訓練並測試幾次比較
看看，或直接調高隱藏層的神經元個數。另外，不同的訓練資料與測試資料的

選擇，都會影響評估的結果，若不能快速、大量的執行各種測試評估直到滿意，

再好的類神經網路也只是理想而已，這便是 90年代的實際狀況。

2.3 NeuroLab類神經網路套件的使用

NeuroLab 是一組號稱「簡單有力 Simple and Powerful」的神經網路程式庫。
6最大的特色是其使用方式近似著名的 MATLAB神經網路套件（Neural Network
Toolbox (NNT)），吸引原 MATLAB使用者的青睞。

5因為採 randsphere生成樣本，因此只能控制落在整個圓的樣本數，分別為 1000與 2000。
經過篩選後，落在扇形區的樣本數是 213與 447。

6參考網路使用手冊 https://pythonhosted.org/neurolab/

10

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35
Training Data
Testing Data
Prediction

(a)隱藏層 40,總樣本數 213

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35
Training Data
Testing Data
Prediction

(b)隱藏層 40,總樣本數 447

圖 8: 隱藏層 q = 40下的訓練資料（+字符號）、測試資料（o符號）與預測資料
（*符號）的關係位置。總樣本數 (a) 213, (b) 447。

本節介紹 NeuroLab神經網路中與前一節相同的Multilayer feed forward percep-
tron(newff)，7典型的設定如下程式碼：

import neurolab as nl
... 輸入資料 ...
InputX = np.c_[x_train, y_train] # inputs: N x 2
OutputY = np.c_[theta1, theta2] # output: N x 2

create network
hidden_output_layers = [20, 2]#[hidden layers,output layer]

set up activation functions for each hidden layer and output layer
transf = [nl.trans.TanSig(), nl.trans.PureLin()]

net = nl.net.newff([[x1.min(), x1.max()], [x2.min(), x2.max()]],
size = hidden_output_layers, transf = transf)

#set up traning func
net.trainf = nl.train.train_bfgs # the default
net.trainf = nl.train.train_cg # Newton−CG method
net.trainf = nl.train.train_gd
net.trainf = nl.train.train_gdx

start training
err = net.train(InputX, OutputY, epochs = 5000, \

show = 100, goal = 0.01)
7兩者名稱不同，但意思一樣。

11

Calculate fitted or prediction values
OutputY_hat = net.sim(InputX)

神經網路模型的設定程序與上一節的方式差不多。先建立神經網路的物件並

設定必要的參數值，譬如含幾個隱藏層及每個隱藏層的神經元數量、每個隱藏

層的輸出函數或稱轉換函數（Activation function, Transfer function）及訓練演算
法。其中關於神經網路的層數算法，文獻上並沒有一致的說法，在這個套件裡，

隱藏層包含了最後的輸出層（有就是除了輸入層以外，都稱隱藏層），上述程

式碼的 hidden_output_layers = [20, 2]代表輸出層有兩個變數，在
輸入與輸出之間的一個隱藏層，神經元設為 20個。中間隱藏層與輸出層的轉
換函數分別為 Hyperbolic tangent sigmoid transfer function(TanSig)及 Pure linear
function(PureLin)其中 TagSig類似式 (2)，而 PureLin則是純粹的線性輸
出。

建立神經網路模型的指令 net = nl.net.newff的第一個參數表明了輸入
層的變數數量及其範圍值。而指令 net.trainf = nl.train.train_bfgs
則指定 BFGS為訓練演算法，這也是預設的演算法。根據使用手冊上的說明，
這個 BFGS演算法出自 scipy。其他可使用的演算法也被註解在下面，僅供參
考。不論是演算法還是前面提及的轉換函數，都與資料的型態與來源有關。指

令 net.train()開始對輸出入資料進行訓練，幾個常見的參數如 epochs =
5000表示完整資料被訓練的次數，預設值為 500次，若演算法執行到達這個
次數尚未收斂，便強制結束。goal = 0.01代表演算法停止的一項指標，在
此為 Sum of Squared Error(SSE)，即輸出的真實值與擬和值的 SSE誤差小於 0.01
即停止。8另一個參數 show = 100表示每隔 100個 epochs列印出 SSE的值。
最後，err = net.train()的輸出為演算法進程中每個 epoch的 SSE值。圖
9(a)展示機器手臂的訓練與測試資料的預測誤差。與圖 8相比，NeuroLab的
netff套件只用了 20個神經元便取得很好的結果。圖 9(b)展示訓練過程中 SSE
下降的趨勢，在將近 800次 epochs便下降到 0.01。

上述程式碼的最後一個指令 net.sim等於其他套件的 predict的意思，也就是
使用訓練好的模型 (net)對輸入資料進行計算，得到輸出值。

8SSE =
∑N

i=1 ||yi − ŷi||2

12

0 5 10 15 20 25 30
x

0

5

10

15

20

25

30
y

SSE in testing is 0.003684
Training Data
Testing Data
Prediction

(a)測試資料的預測

0 100 200 300 400 500 600 700 800
Epochs

0.02

0.04

0.06

0.08

0.10

SS
E

Errors in training

(b)訓練誤差

圖 9: NeuroLab一個隱藏層（含 20個神經元）的 (a)預測能力與 (b)訓練過程
誤差的遞減。

3 圖形識別

類神經網路也普遍被應用在圖形識別上（Pattern Recognition），一般被歸類為

「群組判別」，可以是監督式或非監督式。圖形識別指的是簡單線條或單純影像

的判別，譬如，圖 10從 0到 9的幾個手寫數字。早期應用在郵務系統分辨信
件、包裹上的郵遞區號。由於手寫方式各異，每個相同數字的樣子也各異其趣，

造成電腦自動判別時易產生困擾。而類神經網路的學習能力提供極有效率的解

方，不妨親自來試試這個簡單的問題。

在進入神經網路的辨識訓練前，先岔題到影像資料的安排與呈現。在此我們

準備了如圖 10的手寫數字，9每個數字 1000張，每張大小為 28 × 28的黑白影

像，作為類神經網路訓練用的資料。在進行訓練前，一定要先看看資料的長

相，才能對接下來的神經網路訓練的難度有初步的看法。下列程式碼做出了圖

10。

from scipy.io import loadmat

data_dir = ’../Data/’
D = loadmat(data_dir + ’Digits_train.mat’)
D.keys()
X = D[’X’] # images
y = D[’y’] # labels: single output in 0~9

9下載點 https://ntpuccw.blog/supplements/matlab-in-statistical-computing/

13

plt.figure(figsize = (9,6))
prepare and diaplay a montage of digit images
n, m = 20, 30 # A n x m montage (total mn images)
sz = np.sqrt(X.shape[1]).astype(’int’) # image size sz x sz
M = np.zeros((m*sz, n*sz)) # montage image
A = X[:m*n,:] # show the first nm images
Arrange images to form a montage
for i in range(m) :

for j in range(n) :
M[i*sz: (i+1)*sz, j*sz:(j+1)*sz] = \

A[i*n+j,:].reshape(sz, sz)

plt.imshow(M.T, cmap = plt.cm.gray_r, \
interpolation = ’nearest’)

plt.xticks([])
plt.yticks([])
plt.title(’The Montage of handwriting digits’)
plt.show()

圖 10: 手寫數字

手寫數字檔以 MATLAB的檔案格式儲存，因此採用 scipy.io的 loadmat
指令取得。檔案內的 X變數為 1000 × 784的影像矩陣，即 1000張影像，每張

大小為 28 × 28的正方形影像，拉開成一 1 × 784的向量。將這樣的矩陣從最上

面取 600張，製作成如圖 10的 20× 30蒙太奇圖陣（Montage），需要將 1× 784

的向量 reshape成 28× 28的影像矩陣，並一一置入蒙太奇圖陣的矩陣 M。程
式碼中，迴圈內的矩陣空間安排是較為費心，請細心解讀，方便以後模仿。此

外，檔案內的輸出變數 y為 1000的向量，輸出值為 0到 9，代表輸入資料的類
別（同手寫數字）。

14

接著開始進行神經網路的設定與訓練。與前段機器手臂的應用不同的是，

手寫辨識屬於群組判別（共 10 個群組），其輸出為類別資料，因此採
sklearn.neural_network的另一個模組 MLPClassifier，如其名所示，
這是作為分類器（Classifier）用途的多層次感知器（Multi-Layer Perceptron）。以
下程式碼展示 MLPClassifier的使用方式（程序大致如上一節的 MLPRe-
gressor）：
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import plot_confusion_matrix

prepare data
X_train, X_test, y_train, y_test = \

train_test_split(X/255, y.ravel(), test_size = 0.25)

setup and run
hidden_layers = (30,) # one hidden layer
solver = ’sgd’ # not efficient, need more tuning
solver = ’lbfgs’ # not suitable here
solver = ’adam’ # default solver
clf = MLPClassifier(max_iter = 10000, solver = solver,

hidden_layer_sizes = hidden_layers, verbose = True,
activation = ’logistic’, tol = 1e−6, random_state = 0)
default activation = ’relu’

clf.fit(X_train, y_train)
y_test_hat = clf.predict(X_test)

程式碼 MLPClassifier() 建立了一個分類的學習器，其中幾個參數（At-
tributes）說明如后：max_iter = 10000 代表演算法的遞迴次數上限，不
管收斂與否，強制停止；solver = ’adam’ 演算法採預設的 adam，適合
較大的數據量。讀者可以試試其他演算法，看看結果如何；verbose = True
將遞迴過程的目標函數值（在此為損失函數 Loss function）列印出來，可
以藉由函數值遞減的速度，觀察學習的過程順利與否。有些時候，訓練過程會

卡在某個區域極小值的坑洞裡爬不出來，最後的結果通常不理想，因此要考慮

重新訓練，給予神經網路不同的初始值；random_state = 0 設定了固定的
隨機亂數產生的位置，也就是每次執行，神經網路內部使用的隨機亂數都會一

樣。當我們希望內部的隨機亂數每次都不同時，這個參數不能給固定的數字；

activation = logistic 代表唯一的隱藏層的啟動函數（又稱轉換函數），
10 其他的選項如 tanh, relu。

上述程式碼最後一行用於預測測試資料的輸出結果。如果要計算訓練資料或測

10logistic function定義為 f(x) = 1
1+e−x

15

試資料的預測能力，可以使用現成的指令與 Confusion matrix，參考作法
如下：

from sklearn.metrics import plot_confusion_matrix

score = clf.score(X_test, y_test)
Confusion matrix
plot_confusion_matrix(clf, X_test, y_test,

cmap = plt.cm.Blues, normalize = ’true’)

圖 11 呈現了對 250 筆測試資料的混淆矩陣（Confusion matrix），格子內
的數字代表該群組的預測準確率，其中以對「3」與「5」的判斷表現最差。11圖

12(a) 則是更改指令 plot_confusion_matrix 內的參數 normalized
= ’false’ ，呈現實際的準確數字，而圖 12(b) 展示訓練過程中損失函數
遞減的趨勢，可以看出大約前 1/4 陡降，之後便緩步下降，直到滿足設定的
損失函數在連續 10 次遞迴，其變化皆小於設定的 tol = 1e-6。

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

1 0 0 0 0 0 0 0 0 0

0 0.87 0 0 0 0.032 0 0.0320.065 0

0.045 0 0.95 0 0 0 0 0 0 0

0.042 0 0.0830.71 0 0.042 0 0 0.12 0

0 0 0 0 0.93 0 0 0 0 0.071

0.0450.0450.0450.045 0 0.770.045 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0.91 0 0.087

0 0 0 0 0 0.045 0 0 0.95 0

0 0 0 0 0.043 0 0 0 0 0.96

Testing score =90.80%

0.0

0.2

0.4

0.6

0.8

1.0

圖 11: MLPClassifier含一個隱藏層（30個神經元）對測試資料的預測能力
以 Confusion matrix表示。

圖 12(b) 的損失函數遞減趨勢，也在訓練過後被留在這裡：
plt.plot(clf.loss_curve_)

11看到這個結果，我們必須回頭去看原始的數字圖，如圖 10，感受一下是否這兩個數字圖特
別容易混淆？譬如，回頭看圖 11在 true label為 3的那一列，被判為 8的比例高達 12%，是所有
錯判率最高的一項。

16

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

33 0 0 0 0 0 0 0 0 0

0 27 0 0 0 1 0 1 2 0

1 0 21 0 0 0 0 0 0 0

1 0 2 17 0 1 0 0 3 0

0 0 0 0 26 0 0 0 0 2

1 1 1 1 0 17 1 0 0 0

0 0 0 0 0 0 22 0 0 0

0 0 0 0 0 0 0 21 0 2

0 0 0 0 0 1 0 0 21 0

0 0 0 0 1 0 0 0 0 22

Testing score =90.80%

0

5

10

15

20

25

30

(a) Confusion Matrix

0 250 500 750 1000 1250 1500 1750 2000
Iter.

0.0

0.5

1.0

1.5

2.0

Fit
tin

g
Lo

ss

Training Loss Curve

(b)訓練誤差

圖 12: MLPClassifier一個隱藏層（含 30個神經元）的 (a)測試資料的預測能
力與 (b)訓練過程誤差的遞減。

clf = MLPClassifier() 訓練過後，使用者可以從 clf 找到許多關於該神
經網路的設定與執行過程中的數據，譬如，除了上述的 clf.loss_curve_，
還有：

clf.loss_ # The current value of loss function
clf.best_loss_
clf.n_layers_ # input layer is counted
clf.n_outputs_ # Number of outputs
clf.out_activation_ # softmax is employed here
clf.n_iter_ # The total number of iterations
clf.t_ # The number of training samples
clf.classes_ # Class labels for each output.
clf.get_params(deep=True) # get all parameters

讀者不妨列印出來看看，必要時查詢使用手冊。其中值得一提的是 clf.out_activation_。
這是紀錄神經網路的輸出函數，得到的答案是 softmax。這是群組判別最常
用的輸出函數，一般來說，當有 10 個群組別時，softmax 有 10 個輸出，
輸出值為屬於該類別的機率，全部相加為 1。MLPClassifier 將這 10 個
輸出合併為一個，即機率值最高的那個群組別。

4 觀察與延伸

1. 延伸前述指令 randsphere 能在高維度球體內產生均勻的亂數，下述程式
碼繪製了圖 13。

center = np.array([0, 0, 0])
radius = 1
n = 1000

17

fig = plt.figure(figsize=(6,6), dpi=300)
ax = fig.add_subplot(projection=’3d’)

u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
x = radius * np.outer(np.cos(u), np.sin(v))
y = radius * np.outer(np.sin(u), np.sin(v))
z = radius * np.outer(np.ones(np.size(u)), np.cos(v))

Plot the surface
ax.plot_surface(x, y, z, color = ’#CFF5D9’, alpha = 0.3)
ax.plot(np.sin(u), np.cos(u), 0, color=’k’, linewidth = 1)
ax.plot([0]*100,np.sin(u),np.cos(u), color=’k’, \

linewidth = 1, linestyle = ’dashed’)
P = randsphere(center, radius, n)
for i in range(n):

ax.scatter(P[i, 0], P[i, 1], P[i, 2], marker = ’*’, \
c = ’#E2A428’, s = 2)

ax.view_init(elev = 25, azim = −61)
ax.set_xticks([−1, 0, 1])
ax.set_yticks([−1, 0, 1])
ax.set_zticks([−1, 0, 1])
plt.show()

2. 在機器人手臂的神經網路訓練，本文採用了 sklearn.neural_network.MLPRegressor
與 NeuroLab.net.newff 兩種套件。但是在圖形辨識方面，只採用
sklearn.neural_network 的另一個產品 MLPClassifier。讀者可
以試著用 NeuroLab.net.newff 配合輸出層的轉換函數為 SoftMax，
是否也能展現辨識能力？其實，不管 NeuroLab.net.newff 做為圖形
辨識或群組分類的能力如何，它缺乏後援的支持，早已不是好的選項，譬

如 NeuroLab.net 並沒有提供混淆矩陣的繪製，使用者必須自己繪製，
便會令人卻步。

5 習題

1. 繪製式 (2) 的函數圖，其中 c1 = 1.005, c2 = 1。

2. 試著產生如圖 3 的訓練資料 100 筆，讓這些資料盡量均勻地散佈在機
器手臂能及的範圍內。

3. 在機器手臂資料的訓練中測試參數 early_stopping 的驗證效果。根

18

圖 13: 使用程式 randspere繪製單位球體內均勻散佈的點

據 MLPRegresor 的使用規則，early_stopping 僅適用於演算法為
sgd, adam 兩種。

4. 比較　 sklearn.neural_network 的 MLPRegresor 模組與 neu-
roLab 的 net.netff 模組，在相同隱藏層神經元數量與使用相同演算
法的前提下，比較兩者的預測能力。

5. 自行找一個題目適用於 Neural Network Fitting 的類神經網路訓練
（如機器手臂的學習）。輸入與輸出資料皆為連續型，來自現成資料或自行

產生資料皆可。

6. 文中對數字資料的訓練與測試僅來自 1000 筆資料。請自原始資料中，
擷取更多的資料作為訓練，評估訓練數量對預測精準度的影響。下列指令

可以自 sklearn.datasets 中取得 70,000 筆資料：
from sklearn.datasets import fetch_openml

X, y = fetch_openml(’mnist_784’, version =1,\
return_X_y = True)

19

7. 請自數字資料裡選取未接受訓練的數字資料，並寫一支程式來測試已訓練
好的類神經網路的判斷能力。

8. 本章舉數字判讀作為圖形識別的範例，請讀者模仿本章的做法，但使用不
同的圖形，譬如手寫英文字母的判別。所需的圖形可以上網搜尋取得。12

9. 在　 sklearn.neural_network 的 MLPRegresor 與 MLPClassi-
fier 兩個神經網路模組中，還有一個重要的參數 early_stopping。
顧名思義，這個參數可以讓訓練過程提早結束。而需要提早結束的理由來

自原來設定的結束條件，即損失函數在經過預設的 10 次遞迴後，變化的
幅度小於 tol（預設為 1e-4）。這個停止條件毫無根據，只是強制演算
法必須停止而已，至於變化的幅度要設定多小，也是經驗值。設定太小，

會造成訓練時間過長，而且可能導致過度訓練（Over-fitting）；設定
值太大，會造成訓練不足。early_stopping = True 則是在訓練過程
中，撥出一部分資料（預設為 10%）做為查核之用（Validate），當查
核資料的誤差持續 10 次遞迴不再遞減時（即不減反增），則演算法必須
提早結束，以避免過度學習。此時，正式的結束點定位在查核資料誤差最

小的地方。請讀者試著引入 early_stopping = True，並比較查核與
否的對於實際預測能力的影響。

12https://www.kaggle.com/sachinpatel21/az-handwritten-alphabets-in-csv-format

20

