L AR RS

>?k'//
i
Rt
‘é}%
XX
AJ
vy

December 12, 2022

KERaR A RS (Aritficial Neural Network, ANN) & T 90 Efﬁ C FEE— I N TE
22 (A WEUH - NBSFENDIR - (FHEI TR > 72 2R E B
JREERE o S A IR AE R A AT ﬁmﬁﬁgf&@mﬁﬁ“ o BERIX - BE
% EISEERR AT TRE S TFEAAIE « 55— 71 - e ps B AR AL 22
HY TEE o EfERSHERERE S EEFREA LAY A - I Ry 2 1%
AT EEEENIEE - BHAEEL -

HRMAN LB BT Z DRI % - SN EFIEH A 2RE
THE &G ROV - 7B W, (Pattern Recognition) Y4 I B E 28
fE o JERSERAVER - TSRS - TR AFEEHESEE (Deep Learning)
HIETT « REES G HERE IS » IELL sklearn.neural_network J
neurolab Eff 5T H » DIAEHAIGYH GBS MRS YD

A T AR R

(AERA Python HYFE 4 BAEE %)
Eisa
numpy: outer, tile
matplotlib.pyplot:imshow, surface
scipy.io: loadmat
sklearn.neural_network:MLPRegressor, MLPClassifier
sklearn.model_selection:train_test split
sklearn.metrics:mean_squared_eror, plot confusion matrix

neurolab:newff

45 = A 47
1 B5=Jr4n

1.1 FAiEET, (Feedforward) fE &R IE

| o B — (R el e Yy S A R e O s - B P R (R R BB By
7 Al (Input) FURF p (EE2E(EE (BT p=14) > TEEESE (Hidden
Layer) H ¢ {E##&0T (BT ¢ = 10) KixAEAVEHE (Output Layer) - 345
r (i SR (T r = 3) - i A B (EE p, r RERERVES R E - &
AN — RIS TR AR p = 2 ARFRERIE > 1 r =2 CRES 75
AR A TE - (B 15— TRAYE T YRR e B HH g - 4712 R el Y S5 A B Py
SIVHEOTREE ¢ - q BOK - UFRG Bl A Z A B (B R - T2 R (Y
FAEAGER - (HE R ER IR MR S

Hidden Layer Output Layer

Input | Output
14 3
10 3 r
P q

1e B A {181 sl g vy S A i B A e A

i s A (Y p (BB ERIR Ry w1, @0, w0 W H I Y r (HE BRI R
J1s G2, -+ o G > ATETERFSTHCE AR A ey) Eildy AR B2 Bl (R B ol

q p
@kZZwiw (ngjxﬂrb})Mi, 1<k<r (1)
i=1 j=1
HH RS g () ATDAEERE Ry (—1<g(2) < 1)
1—e %%
g<Z) - Cll + e—¢c2% (2)

BHB g (2) HO-EAR AT | ST e Ua SR B - R g(2) R LUAE#H
> DIBITHRERE RmE R PN | AR y = o 0 tEhRE 1 AR
JEFTEBIE R ITRZR - 20 (1) TEY w), B b} (REE —(ERSRE A BT
5 j B A ITREE (58 (Weightings) BLfrFS (48 (Biases) - FIEEH > wf, 81 b7
ARSI (TR BWME) BI5 k(T al— BB | (Hand i s
(5B P (8 o

SRR TR IS T SIAT B A BB 0 () B () - S (5), 0},) B2
b o (S ELETEOR y(n) BUEEABRAIA L ZOR 0x(n) HUSEE BRD - IR
UR[EfE MATLAB it

N EHEER > PR s a sl SRPE Bz - 5SRis 2 E i iy ME MR- -

min (<) 3)
Hr R e
N r
Q) = Y D (wln) -
n=1 k=1
N r q p 2
= > (yk(n) — > whig <Z wiT; + b%) + bi) 4
n=1 k=1 i=1 j=1

H28 0 = {ww W b0 Y ic1 0 gim1 2 k1200 e g+ qr + g+ @S
B LR 1 HySTREE s 28t (p = 14, = 10,7 = 3) BBl - =0 (3) HIERZE
B e(Q) By 183 {1 R HALAES o] 47 Ry —(ESEFE4E ~ SRS MERZETR
= EIRE - sERm A (X)) BElgg (V) WIBAARECERIRES: -

ISR EP SRS 8 1F 90 FACEIHEE—FahE = - BEZRT L& 5% 7@1_1_]1}7’@)%
TEFF 2 B0 Q) i 4EE (BE %) s/ MENETEREAEHE -
W ABE (p) B - FrEENEEE EoTEE (o) B %E?“}”ﬁ
HITR5E3E (e(Q) BN) » AR FEEE RNVETER - MiEiGHRERE#EE
EhfEE N B ZAPE o S ENINEEEE HK@\EEE‘“E’J%% B BUAY AL
Ao DM RV EERE T B E) WEE T B —EIA

TSR - BEORSEE PR T REEE @E?ﬁ T3 AR T SRR R Y BT

w4 (fitting) g5) °

S ERH B s B2 R AV IN B B M - B 2 e R A i i A L L 72
i H = E R I R M el BT Fﬁzﬁmiﬂ’]?‘i& BB SRy ACHIEER > Hof
EH%fEIKﬁD?EEE PR EZED PSR - RSO T R MR E
HIEHE AR (R o PO B MG EL A R A G] - 0 SR e AL iy B
BEEZFEEE - T BRI ES N T RIS Bt & e A F AR SERE R E 2R
[EIHIHIEEER -

2 s AFEEHAH
2.1 R "3¥ES)FTET 4 (Inverse Kinematic Equations)

2 E—(EEFE 5 R (DOF, Degree of Freedom) AU T8 - AR ET&
RETHI R I = 20,1 = 10 - WECTFE(RIZRIE AL 01, 0, BYSEE > m[LUEFE

3

BANHIIALE (v, y) BEAE 3 55— RRVIZZEL - WHUE TRl 5
A DA ST -

301
25

20 -

30

2: PR T

PRI RE e S B R (A T 0, 0, SRR ST IS B EI H ATt (2, y) - 2SS
TE (z,y) - WHETEU 01,0, EMEANE - S ES HEAETE - W4
el > el > NEtE A ES TR - 4050 (6) HY IKE

FKE
x = lycos(0y) + lycos(0; + 02)

Yy = ll Sil’l(gl) + lg sin(91 + 02) (5)
IKE
2 212 12
_ afrtty ==
6, = cos (ST)
_ _ I3 sin(6;)

0, — tan'(Z) —tan? | 2272 6
! an <x> an (11 + 5 cos(6s) ©)

G TR TR RS 2 % TR AT DS
ATRUIC » LT - 125 > TRIPTHATER (6) AU A - BT R hee e

4

FEHYERE T > RS T RE R AV E E N — S B E RIS E R (LE 3
B+ FALE) - S HAE RS 12 48 18 LEAl | SR R 2 i L A Bl AL A
% AREBEBEZEB% EHEHNUEER (z,y) > Sa e L=

(6) IEREAYAE (61, 02) ?

304
+ o+
+
+
+ o+
o
254 + + 4 + +
+ +
+ 4 + +
+
+ +
+ + 4
20<+ +++ . +
+ + +
+ o, +
t+ o+ + +
+ + n
15<+++++ ++ + o
+ +
A, ty +
+y + + o+
gy +, 0t n
101 +++ + F +
+ +
+ + + 0+
+
+ + 0+
+ t+ 4+
1 + +
5 v 3t
+
+
+ o+
+ +
04 + + 4+
T T T
0 5 10 15

3: W RN T T R i B R R o AT

AREFIE W Y A eE =N 28 (Two Layer Feed-Forward Neural Network) » fRIE
MR R EGET > AR i AR AL E. (v, y) > Hd Ates FEHY M

{E A (61, 02)

> ZRTEANE] 4 - F PR Sea BRI PR A 10 (BT -

EE

A ERREEREENEE > TEREm NS EAEEENZR - EFHE
BEEE R - ELE S EoriEESE 10, 20, 40 81 80 FFHYE B B (+) B
ErE (o) HYESR » WEFETEJTIRERZ (Root Mean Squared Error, rmse) {H -
EE P LR ERR B B E NS - SRR T R E R
FH2E 80 B > HUTIRERZERME I T « i B GERSISRT = » Sl ER
FREAHERZEH#SE » RS INEERHEREZTE -

Hidden

Output

Input Output
2 2

10

2

4: T HIR R LB

SRR R e — (HIRE G - P AR T R HUA B AL L R A EORH AR
Bl B A S ERRIE S - — RS A TT B o i i R AVEI SR BRI T RE D E

PR R T -

rmse = \/ by SN (01(6) — 01(0))% + (Ba(i) — 0a(i))?

5

30 30
tot otln v ¢ &
¥
+04 n o S, +
254 +8% 2 o T B 25 I L AP
+ v > a“ + + + +
P L + + *
+ o4 i + w + +
] + + Py +
20 |, . o, o ¥ * 204 +o, - . &
+ + + 4 +
+o, + + » , - e .
tet o 4 + + * +
+ Y + + . » o,
15 4 PR te; + & * e + - +
A + + *+ r 154 + + . + + +
- +o, + + > LS . P
o . % %5 o o - 5 . o + +
3 B D R + Jéee * L
g + - +
10 "2ine % Oy ¢ o+ o ¥ N P . o + 4 +
29, + + e 10 +y e Ok + 4
+% 5% ¢ 5 % + 9 9 DR + + &
+ r & + + * ++ L *] *
+ b s & + t - Py +
54 £ PR Lo . .t
Ted o+ 51 e ¥ P
P % : 2 2 ® it * * s vt
04 FoF ok o+ o+ o+ o+ o+ o+ 4 + + + B F
0 + + + o+ o+ o+ o+ o+
_5 . T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
X
S 10 =0.0455 b) [k 20 =0.0346
a) = B , I'mS¢ . = = , 'mS¢ .
30 30
o +
v
* r
+t * . + ® *
] 1 + | e *
25 . LA TG 25 e N
+ 4 " b
1 4 -
20 + PO 20 4 v
’ o~ LI h + 1 © +
. 2, . - 1]
15 LA, e ‘ > 15 - W7
+ ' 4 i
* 7 + a
Forg Y 4 P + ! +
g, “, * L %, -
10 . + + 10 - . T .
- - + -
e ° - 1o N
- - - Y 4
N Lo 4
5 . RS 5 %% F e Le
- -~ ' : + + +
??
0 > % & 5 + + 4 4 o+ 0 < +
0 5 10 15 20 25 30 0 5 10 15 20 25 30

(c) [&ii& & 40, rmse = 0.0210 (d) &2 80, rmse = 0.0235
5: [k e R B S E VAR

5 RS AR SR sklearn E:HJ neural_network.MLPRegressor
§% > Ht MLPRegressor {3 Multi-Layer Perceptron Regressor > [ffj Multi-
Layer Perceptron {24 & 1 1Y% & #H4E T (J8 %125 perceptrons) HYZEfE » Re-
gressor {3 Ho i Hi/fm A Y B8 (5 [S A2 B A AU ABE S (ot Bl A\ By 28 s g 1Y
ERt o IR o YRR 2 T MER AT ER (S s) B
MLPRegressor HYEA = »

import numpy as np
from sklearn.neural_network 1import MLPRegressor
from sklearn.metrics import mean_squared_error

Preaper training data (input)
11, 12 = 20, 10
t = np.linspace(0, np.pi/2, 20)

4535 neural_network.MLPClassifier EfEAHISEE -

f_l

= np.arange(l1 - 12 + 1, 11 + 12 + 1, 2)
X = l.reshape(-1,1) @ np.cos(t.reshape(1,-1))
= l.reshape(-1,1) @ np.sin(t.reshape(1,-1))

<

prepare training data (output)

theta2 = np.arccos((X.ravel()**x2 + Y.ravel()**x2 -\
T1xx2 — 12x*x2)/(2%x11%12))

thetal = np.arctan(Y.ravel()/X.ravel()) - \
np.arctan(12*np.sin(theta2)/(11+12*np.cos(theta2)))

setup for ANN training

InputX = np.c_[X.ravel(), Y.ravel()]

OutputY = np.c_[thetal, theta2]

hidden_layers = (10,)

solver = ’1bfgs’ # the best for robot data

solver = ’sgd’

solver = ’adam’

mlp_reg = MLPRegressor(max_iter = 8000, solver = solver,
hidden_layer_sizes = hidden_layers, verbose = False,
activation = ’logistic’, # default activation = ’relu’
tol=1e-6, random_state = 0)

mlp_reg.fit(InputX, OutputY) # Training ...

OutputY_hat = mlp_reg.predict(InputX) # Calculate fitted values
thetal_hat, theta2_hat = OutputY_hat[:,0], OutputY_hat[:,1]

convert to (x,y) positions

x_hat = 11 * np.cos(thetal_hat) + \

12 * np.cos(thetal_hat+theta2_hat)
y_hat = 11 * np.sin(thetal_hat) + \
12 * np.sin(thetal_hat+theta2_hat)

rmse = np.sqrt(mean_squared_error (OutputY, OutputY_hat))
print(’Root_Mean_square_error.is.{:.4f}’.format(rmse))

Faltfi5 < MPLRegressor &Y Ik € Z YR 28 - Hif
max_iter=8000 Bl tol=le-6 & —fEHE AZEFENIEE HEEEHEHE
AR AR - —REEBEVEB N IEE A0S - F— SR E N e S SR
i max_iter = 8000 UM HYMIRE R - RIE M AR B s bRt - oafliz
1F 5 tol=1le-6 AFE HAEmWE (BFELHEL Loss function) [EE 1R~ FHEHE
s (LR tol) EM?JJ:Z]%ZEL » FEEHMEERN S A HET 0 H
BEET R EDAR > NEEIEER -

=T max_iter=8000Ei tol=1e-6 24} IEH max_fun, Bl early_stopping
FE IR - SEE T LLEEE - H early_stopping ZW E(ISR E 5

oy tH— 0o i R B e R A= 1R RE 2 A (Validation) o —{ERERR T HYEFETS
S HERREAEN AEEEEEWET - =40 learning_rate, momen-
tum % - 5540 0 3E verbose=True A LA E[H - A2 FE Y B RS < 75t
SHEYYER AT FEEEAETEENTE (AgEfHRZEL) -

AN - EREEATE O R EEAVEE - (FREE - EE S EEE B B S
#EHE solver = ’1bfgs’ REE44HY LBFGS JEHE L - MPLRegressor S5zt
adam Bl sgd WIfdIHEDE - %A HABGURL - SEERTHLHEE - &g EH
KAEps P A IRER B activation @ FEILEH FRALHLAY logistic i
H 5A relu WEUE FIRREEENZ4 o R EHIERT T MPLRegres—
sor A S > AILLAHIES print(mlp_reg.get_params()) FIEJH T
HSHBLEE -

31 GR T BT AL AR s (o AR IR R B AR B AR P R i &k - B
4 5T EFT AR E - Biae AR R LSS TE TR AV A o LR
HEEAMARERHBER (BISERAE) Frdpny A s e EA L - 40
RERZEAE] REZHYHRE Y > RIREAZ 55] e S A 5 R R AR s TR Y P R AR i
gy (HUCHEREEGE 2 A AT REHEE AV S S e » S A THEE R RYAERERE - ALY
IHARFER A, -

2.2 FIARERE ERIBIE R

5 WAl SR E R IR R AR AY B84 - B4 > fE-FCEERV N > B R R
% W EIISRERRVEREA S S > EENEA R > E(E M E AT
e

6 R T B , WA ARRRYE R - BfEE - BREETTPH
W IEEE AR P ST R RLEL > IR SE —RIRNHIATAE RS > Bk L% A
L Ry 10 B2 30 YA Z WAHVELE - S ET AT AT 2 By APtk > B
fhoRATH - 2E AT

radius_in, radius_out =10, 30

X = uniform.rvs(loc = 0, scale = radius_out, size=(N, 2))
d = np.sqrt(X[:, 0] *x*x 2 + X[:, 1] *x 2)

Idx = (d < radius_out) & (d > radius_in)

TrainData = X[(d < radius_out) & (d > radius_in), :]

%f NEEKEEN (EEFEEEZER]) - EAE A R8Ny B ERE
Z37 1000 (& @lLEH TEUGEEN - 2FRREEELT -

8

40

35 1

30 ———

25 =

20 1

154

10 ':\ -

25 30 35 40

301

20 4

104

—-10 1

—20 A1

—-30 1

7: F AR AE R Y ALEL

import numpy as np

from scipy.special import gammainc

def randsphere(center, radius, n_per_sphere):
»»»generate random numbers in a n-dimensional sphere

1.e.

in 2D,

it 1s in a circle; in 3D, it is in a ball

39999

r = radius

ndim = center.size

X = np.random.normal(size=(n_per_sphere, ndim))

ssq = np.sum(x **x 2, axis=1)

fr = r * gammainc(ndim / 2, ssq / 2) ** (1 / ndim)\
/ np.sqrt(ssq)

frtiled = np.tile(fr.reshape(n_per_sphere, 1), (1, ndim))

p = center + np.multiply(x, frtiled)

return p

p = randsphere(np.array([0, 0], 30, 1000)

Hrrpg# randsphere {2 2K 7 4 15 & 25 I ERAE N 39 S B U &G - H
s —{E 28 center {FFTLBEIE > HA/N (center.size) thE2E
PRZERAM4ENE - radius (REF1E > n_per_sphere EHAS ; FTLL rand-
sphere(np.array ([0, 0], 30, 1000) fRF{EEK 30 WWEINGE S ES
1000 {E @l 8 - B BB " EYE, o AUS S T EREZER - 12X

Al

p = pl(pl:,0] > 0) & (p[:,1] > 0), :] # FE—ZR
d = np.sum(p**2, axis=1)

p = pld >= radius_in**x2, :]1 # 5N

|

EURFIF randsphere ZERCER} - Wik 7:3 ELBI73 I SRELHEAE R R - Sl
BRI A SR ANN i - f225 DU B R Bgall SREE R - (8 8 il &
BHVALE (- 5590 ~ WIEER (o f79%) EFENER (% 758 HIRIRLE -
Hoh R e By 40 > HEEEARESY B 213 B 447 < SPIEUERL (o 7757) HTEMIE
B O 7598 AR BEA BN S 7 o LR T DU R Sl SR 28 R b
BE > HPER SRR HEOTEE - 50 - A ERVIISRE R B E R Y
B B BRI R S AT - RESITRENEEHEESIwE
FHFR st SRR E - BER 90 FRIVERIRM -

2.3 NeurolLab FHELFREAGER

NeuroLab /& —4H55f% B 7/5 JJ Simple and Powerful | 4L 4G RE 2 A -
S RHYFF (OB 70T (D 47 MATLAB fH&E4EES =+ (Neural Network
Toolbox (NNT)) » IE5 |5 MATLAB { &I EHBE -

SR AR randsphere A RiEA > [RIHE HEEIEHITSERL(EBEAIREAEL - 4351 1000 £ 2000
IEET 5% o RIS AREUE 213 B 447 -
6 =244 (o F F-ffif https://pythonhosted.org/neurolab/

|

10

35 35
+ Training Data + Training Data
@ Testing Data @ Testing Data
30‘*_\+~ * Prediction 30 4 * Prediction
+
F +$- \\ ? ..:;;?:ht
¥ !
+ o %\N‘
PTR . ; SR 25| e T o
¥
L A \ bt a3 +-1: +Hh
P HE o+ &+ e -+ +&
* o+t b+ P S %
w0l e* et N ol FHETY erewt,, ¥
I * + ®) L e e + o+ N
ey &y L ey +b§ M ; ++W_ +‘:» .
s THE (R g LN ° + . + 4 +
+ LN e 4 TF L 'S P + F t*+ +y
151 *® LY +-1»- ti 1F - ¥ 4 \ 15 ‘ﬁ."#*- i® $'; : » ‘H*"‘ %% e, T+
+ + H at
« %009 ; +t g + +‘ +. |-++::'|.+"’ o 4 ¢I++)
bl Y 1 . * 1 + ¥ K3 ‘,,1‘ ++ SN *ﬁ ‘+*
104 H + +f P » + 10‘%"* +opd o+ T 4 A
h + — & + 4+t 9 [
+ o+ +
AL e I
+ * +++ t ¢ + + N &
5] L, +g®e T 5 + iy ¥ £ P) +:"++_
++++ L :r‘++ "‘:"'."_’*'-":“ + +*
"‘+‘+. + » ‘+ '+"‘+1‘+ ++x +u !
) | w7 vy T 0 ! ;*A ,I#‘Jf., %',# et
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

(a) Bk 40, S8R ACHL 213 (b) &2 40, ZEEEAE 447
8: FEREIE q = 40 THUAIIGRERS (+ SRF3E) < MISCEERE o %) BRFDHIZDR
C* 7538) ERMARIE - SOEEARRL (a) 213, (b) 447 -
A48 NeuroLab W4L4EErH L7 —&iAHIF Y Multilayer feed forward percep-
tron(newf) » IR AT T FE A

import neurolab as nl

i A E K
InputX np.c_[x_train, y_train] # inputs: N x 2
OutputyY np.c_[thetal, theta2] # output: N x 2

create network

hidden_output_layers = [20, 2]#[hidden layers,output layer]

set up activation functions for each hidden layer and ou
transf = [nl.trans.TanSig(), nl.trans.PureLin()]

net nl.net.newff([[x1.min(), x1.max()], [x2.min(), x2.ma

size hidden_output_layers, transf = transf)

#set up traning func
net.trainf = nl.train.train_bfgs # the default

net.trainf = nl.train.train_cg # Newton-CG method
net.trainf = nl.train.train_gd
net.trainf = nl.train.train_gdx

start training
err net.train(InputX, OutputY, epochs
show = 100, goal = 0.01)

5000, \

"B LTEAE - EEE 5 -

11

tput layer

x()1],

Calculate fitted or prediction values
OutputY_hat = net.sim(InputX)

A PR I R AR E AR P B B —BARY T B L o Se i T S A R Y W) (43112
RE BN SEIE - E A R R e R SRR B A TR R ~ B R
Je2 [Y pR S e R A ok 8 (Activation function, Transfer function) K73l 48 &L
% o HARR e Adpg B BES - SUR B —EHVER A - EEEEAE
FiE gt 7Rkl E CAERERR Vi AJg Lo - #EREESE) - EiltiE
I HEHY hidden_output_layers = [20, 2] Ukt /EA m{#E28 7£
o A Bl Y R — (e g - tES o ae By 20 ([o o i ek feg By o g 1y
ALK 857 B By Hyperbolic tangent sigmoid transfer function(TanS1ig) k. Pure linear
function(PureLin) Ef TagSig FH{I=L (2) > i PureLin HI 2 4H A48 1
e

BTSRRI S net = nl.net.newff S —{ESBEFRH T A
JEryEER e N HEEE - MiES net.trainf = nl.train.train_bfgs
RII$5 € BFGS Rl $iE L - St @ THERAVEEDE « MRIBEHF M EAVEREH -
E{E BFGS JHEVANE scipy « HA I HAVEBE AT WEERAE T iE - Eits
B o N H BRI TR AR S VER N 8 BTSRRI AR - 15
% net.train() fida¥Emn ABRHET TSR - S(EH RAYSEA epochs =
5000 RRTEEEE R SRAT I EL - THEE Ky 500 X » = BUAS TRz 5 {1
RE AR - FERHIGTR - goal = 0.01 AFRIEFIAE (LAY —IHIERE > /£
[tk B Sum of Squared Error(SSE) - B[V -H Y E & {H ELHERI{ERY SSE 3272 /Nid 0.01
Rl 1L » 355 —{E2% show = 100 F/REF 100 {f& epochs FI|E[1H SSE HY{H -
Hf% > err = net.train() AV fEE A ERE F&E epoch 1Y SSE {H -
9(a) a5 B AR SR BRI BRI T ER 2 - BifE 8 FHEL - Neurolab Yy
netff E{:HH T 20 {EHLETERSREFAVEE - B 9(b) Errdll4kiEfE - SSE
TFERVFEES - {EAFHT 800 2K epochs {8 R#EE] 0.01 -

FRE AR (IS net.sim FERHAELFHY predict (YR - LHLE
(s IR A VT (net) i ABRHETTHE > S2mHE -

SSSE= 3" |lvi — ¥il|?

12

SSE in testing is 0.003684

30 1

+ Training Data
@ Testing Data
e * Prediction

251
+

204) -
Errors in training

0.10 -

0.08 -

0.06 -

SSE

0.04 -

0.02 -

T T T T T T T T T
0 100 200 300 400 500 600 700 800
Epochs

(a) FEAERHI T (b) SRz

9: NeuroLab —{E[Ek/E (& 20 (EidEIT) /Y (a) THHIEETIEL (b) SllSkiEE
R ZE AR ©

3 EfZER

SH R AL A B 7,35 2 19 17 P A2 [)P 38 31 (Pattern Recognition) » — R4 B £y
CRRAHAIA o PTDUZ B E A EEEEE S o B ERERY 2 AR R e Al R
HYH R - Z40 - & 10 72 0) 9 /Y& EFHE T - FIHEREEE A% 0 PHE
fF ~ B2 EAVERRESE - N FE TSR BEEESEAR TS 2 H R
75 RCER RS B B RIS 5 AR PRI o TS e aS A s 0y 2238 R T HR B A RV R
75 A B RS S AR

FEHE AT EE G ER R R EREN SR AT - Se B BRI R BRI L PR 23] - 72
HEGE T A0 10 Y FRES - VEERS 1000 5 - FHRA/NE 28 x 28 HIR H5
G E RS EREEBIIRHER - EETIIRAT > —EHRBBERENNE
M AR MR SREVERE A WP B AL - RIS T E
10 -

from scipy.io import loadmat

data_dir = ’../Data/’

D loadmat(data_dir + ’Digits_train.mat’)
D.keys ()

X =D[’X’] # images

y D[’y’] # labels: single output in 0~9

9" R#LEL https:/ntpuccw.blog/supplements/matlab-in-statistical-computing/

13

plt.figure(figsize = (9,6))

prepare and diaplay a montage of digit images

n, m=20, 30 # A n x m montage (total mn images)

sz = np.sqrt(X.shape[l]).astype(’int’) # image size sz x S|
M = np.zeros((m*xsz, n*xsz)) # montage image

A = X[:m*n,:] # show the first nm images

Arrange images to form a montage

for i in range(m)
for j in range(n)
M[i*xsz: (i+l)*sz, j*xsz:(j+1l)*sz] = \
A[ixn+j,:].reshape(sz, sz)

plt.imshow(M.T, cmap = plt.cm.gray_r, \

interpolation = ’nearest’)
plt.xticks([])
plt.yticks([])
plt.title(’The_Montage._of_handwriting.digits’)
plt.show()

FREFAELL MATLAB HIREZEAS 7

o
=
(5]

The Montage of handwriting

igi

FSEeBTEBIFTEF 7Y IEFT[T5442lS63F027]
PI#2L4O07)30024L 14/ E£2ALE/T1E[TOY2T
VLY TUHE R] 0BT WOB/ FI 2T /8 149083
T8AF0R0£1 /7791139547705 759£023
& | FOPT0197 758451 10240/ 4067363 Y
L9EVLIHLI 3T ?ET7749725) 33TAKEQTT
7787523766944 ¥77898F /545502327 \¢]
S ESB3725601 5093856307592 %349%
VPAORHEF#ITI 3170534704785 R0/7 113
I7RF /0027844603093 43239/3707
1097421 THELD500544F32/7/53507/8Y5¢
¢\ 1387 2)12/2)3892aL7f0310351 /5
2494720073 T74H%050b/e35660202a4%
GP0SRABYSE 17331/ 0593044356185 73
S L7854 43340 FQ050/€10£28F577QA2¥%
2328022527 2LTHUOC378D330£6344/7
91 OCL/SO03¥ATEINEL/ DL | A/ 05 14
720+ /87477174851 2009720341431 8
086204 7T b b/ /735463524 FP458 ¢
PRABFILTIIT29007F4YF'-8F857530R4
10: FHRET

KE# A scipy.iofy loadmat

BTG - TEZEMNAY X B 1000 x 784 HYsZEIEML - BT 1000 sk > B5R

KUNFy 28 x 28 WYIEGIERAG: > HIBARG— 1 x 784 BYHIE - RS iRAVHEfH
TETHY 600 5% -

AN |—|

e b
FERCAIE 10 £ 20 x 30 ZERE[EF#E (Montage) » FEELHF 1 x 784

[EIE reshape ik 28 x 28 HYsZEUEM - i——BE ASCRAT EHAVEERE M - 12
A RN HYEEZE R PER R R L > SO > T E LIRS - [t
Hh > FEZENREHEE y &y 1000 fy[EE > E{ER 0 2 9 > AR ABE R
Al (FIFEHET) -

14

PEE B 40 M 17 1o S 4 S 1Y e o BN AR o B P AR S T Y E AN [E Y E
FEWE BN A A (10 [EEE4H) - Himd BB &R - AL
sklearn.neural_network fy5—{E54H MLPClassifier » #IHAAT/R
B lF Ao Ess (Classifier) RV g XIEFIEZS (Multi-Layer Perceptron) » L)
TR MLPClassifier By (2P KA E—H/ify MLPRe-

gressor):

from sklearn.model_selection import train_test_split
from sklearn.neural_network +import MLPClassifier
from sklearn.metrics import plot_confusion_matrix

prepare data
X_train, X_test, y_train, y_test = \
train_test_split(X/255, y.ravel(), test_size = 0.25)

setup and run
hidden_layers = (30,) # one hidden layer

solver = ’sgd’ # not efficient, need more tuning
solver = ’lbfgs’ # not suitable here
solver = ’adam’ # default solver

clf = MLPClassifier(max_iter = 10000, solver = solver,
hidden_layer_sizes = hidden_layers, verbose = True,
activation = ’logistic’, tol = le-6, random_state = 0)
default activation = ’relu’

clf.fit(X_train, y_train)

y_test_hat = clf.predict(X_test)

205 MLPClassifier () Ev 7 —E/rHAVEEES - Hrp&E 2% (At-
tributes) :REHAIE : max_iter = 10000 (CFEEANIEEXE LR » R
BUNHELE > s8E{EIE 5 solver = ’adam’ JHEVERTEERHY adam: HE&
ERHVEEE - EE A DI HMERE - BESEL 5 verbose = True
IR SRR H AR B E (L RRRNEL Loss function) FIENHIZK » A
DURE FH e S R Y 2R S > B2 AR A B - G EeiF 2 SRR S
RAE AR & s ME FY DU TEA 2K - Fef&rV4E KB E A A RIEESRE
=PSSBT RS EIHWIAME s random_state = 0 FE T EEH
VEtRELE AL E - LR T » AR N 0 CE Ry BE R ElL e & —
% o &M E N E A BE R EL B R [EE - S (ES BN RE A EE Y
activation = logistic FRME—AYIERIEHVEE RS ((JOEEIRNED)
10 HAMAYEEIEY] tanh, relu -

AAe FUHE B (R — 17 R TG B Y B H S R - AR BT RSB 5O

ogistic function FEF 5 f(z) = Hi,z

15

SNERHNTEMRIEE ST » ATLAMEAERIESEL Confusion matrix » 2F/EE
W :

from sklearn.metrics import plot_confusion_matrix

score = clf.score(X_test, y_test)

Confusion matrix

plot_confusion_matrix(clf, X_test, y_test,
cmap = plt.cm.Blues, normalize = ’true’)

11 EWTH 250 FHEERAEAEFEM (Confusion matrix) » #&+H
B TR AR TR ERER » Hep DU T3) 81 75) i HIEnRIIE 2 - '
12(a) HIRHEXIES plot_confusion_matrix NAYZ% normalized
= ’false’ -~ EHEFEAVEREKT - WE 12(b) FERIISEREFiEL
RIS - LR HREAT 1/4 BERE - Z1&EEP N E - EEwe s e
ERNEHE S 10 JRE - KL/ NREER tol = le-6-

Testing score =90.80%

1.0
0 © 0000 00 0 O
1{0 WF 0 0 00.03200.032.065 0
0.8
24 0 0 0 0 0 0 0
34.042 0 0.080%Al 000420 0 0.12 0
3 0.6
24{0 0o o oE o0 0o o o0o007]
S 59.046.046.046.045 0 JRAD.0450 O O
B 0.4
6{0 0 0o 0o 0o o 0 0
740 0 0 0o o o o ¥H ooosy
0.2
g{0 0 0 0 000450
910 0 0 000430 o0
T T T T T T T T - 00
0 1 2 3 4 5 6 7 8 9

Predicted label

11: MLPClassi Fier &—(HISHIE (30 (EHLSTT) BHIBZ R TNE:
LA Confusion matrix &7

12(b) AUEARNBARBGESS - tAEH SRR e IS -

plt.plot(clf.loss_curve_)

NEREEGER - RAMTOEBEEEEFRAHETE - 08 10 - f2— N2 s m EE T ER
HIEZRA ? B4 > [BIFEAE 11 1E true label By 3 AYA—31 » #0HI K 8 HUELBS2E 12% > ZATH
SEFIR A=Y —IH

16

Testing score =90.80% Training Loss Curve

0 00 0 0 0 0 0 0 O
140 00 0 1 0 1 2 0 204
211 0 00 0 0 0 0 O 25
3{1 0 2 01 0 0 3 0]
3 20 g °
£440 0 0 0 00 0 0 2 S
- o
$5{1 1 1 1 0 1 0 0 0 15 £1.04
£ B
610 0 0 0 0 O 0 0 0
10
7{0 0 0 0 0 0 O 0o 2 0.5
g8{0 0 0 0 0 1 0 O 0 5
9410 0 0 0 1 0 0 0 0 0.0
,,,,,,,,, 0 , " " : : " " " "
01 2 3 4 5 6 7 8 9 0 250 500 750 1000 1250 1500 1750 2000
Predicted label Iter.
. . N a2
(a) Confusion Matrix OEIE S

12: MLPClassifier —(@[Z5RUE (& 30 (BT #Y (a) AEERAITHNIEE
JIHE (b) FlISRAE TR R A=A, -

clf = MLPClassifier () #l&kiEig > EAETTLME cUf HRERFLRTZH
XA PSR T B TSR AV EIE o B - fr T _BalAY c1f.loss_curve_ >

BH

clf.loss_ # The current value of loss function
clf.best_loss_

clf.n_layers_ # input layer i1s counted

clf.n_outputs_ # Number of outputs
clf.out_activation_ # softmax is employed here

clf.n_diter_ # The total number of iterations
clf.t_ # The number of training samples
clf.classes_ # Class labels for each output.

clf.get_params(deep=True) # get all parameters

A MYIEIHACES - DEREHER T - P ERS—fEVZE clf.out_activation_ -
BT ACHR AL RS Y L el B ISRV E S softmax o EEEA AR

IRV E e —fAER > A 10 [EEHERIES > softmax A 10 {HgH -

iy HEL R B8 R e B RO - 2 EBAEI0 1 - MLPClassifier 48 10
SO R —(E - BIRE RSN ERRE A -

4 ERESEAJE(E

1. AEMRTMES randsphere AELER4EREERBE LIS SR > TilbREt
e TE 13 -

center = np.array([0, 0, 0])
radius = 1
n = 1000

17

fig = plt.figure(figsize=(6,6), dpi=300)
ax = fig.add_subplot(projection=’3d’)

= np.linspace(0, 2 * np.pi, 100)

= np.linspace(0, np.pi, 100)

= radius * np.outer(np.cos(u), np.sin(v))

= radius * np.outer(np.sin(u), np.sin(v))

= radius * np.outer(np.ones(np.size(u)), np.cos(v))

N X < C

Plot the surface
ax.plot_surface(x, y, z, color = ’#CFF5D9’, alpha = 0.B)
ax.plot(np.sin(u), np.cos(u), 0, color="k’, linewidth
ax.plot([0]*100,np.sin(u),np.cos(u), color="k’, \
linewidth = 1, linestyle = ’dashed’)

P = randsphere(center, radius, n)
for i in range(n):

ax.scatter(P[i, 0], P[i, 1], P[i, 2], marker = ’x’| \

c = ’#E2A428°, s = 2)

1)

ax.view_init(elev = 25, azim = -61)
ax.set_xticks([-1, 0, 1])
ax.set_yticks([-1, 0, 1])
ax.set_zticks([-1, 0, 1])
plt.show()

. TEHEER N FRFVHAEREI%E » ACERF T sklearn.neural_network.MLPRegresso
Bl NeuroLab.net.newff WHEEM - HEEBEIZHEITEH - SR
sklearn.neural_network HJ5=—{EFE S MLPClassifier - sE&H]

Dis\#E R NeuroLab.net.newff [d&in @i ity SoftMax »

e AEREEYERAE) ? HE - & NeurolLab.net.newff {{/[EF

PR ECEEAH P RV RE T30 - B 1R ERAY SR - R e RV

41 NeurolLab.net WISARAIEAEMAVEE - EHEFNHECEE

(HE<> AP

ﬂ

\:
A

I

22
L @R (2) HIRBE > KR o = 1.005,0, =1+

- elVEEAAE 3 AVFIsRER 100 S BELERFERN IHIBURER
a1 5 Ae R EEEA o

- S TEERAEIS A2 E early_stopping HYBERGRCR - 17

18

= 2
.
L O
Eafles

13: {5 FHF25\ randspere 4B BL (T ERAG Y25 S B BE

& MLPRegresor HYEAH#A] > early_stopping (&N EREE
sgd, adam Wif&E -

. tb#X sklearn.neural_network [y MLPRegresor f&E&HEL neu-
roLab HJ net.netff 541 » fEMH[E g B EB(EHABREEE
JEHIRIEE D 0 EEECRE Y TEHIRE

. EfTH(EE HEAR Neural Network Fitting fySiHCEsEEsHok
(ADMERRFEFIVEE) - iy A ST EERH S R > A BUR B R 1T
BEAEERE] -

P ERHI REDASERE 1000 FEEK - S E AR -

FHACE ZHTERME Ball 6 sHGTIISREE SRS R A& - TS
A[LLH sklearn.datasets HHI{S 70,000 FE&EK :

from sklearn.datasets import fetch_openml

X, y = fetch_openml(’mnist_784’, version =1,\
return_X_y = True)

19

7. FEHBFEREEIRBZHIRVEB &R - IR — SRR USSR
S AR AR Y H T RE

8. AEBYTHEEIE KB ERIEE - s ARNEOE - HERHA
FEINER - BT BRI HE] - FragnETe ol A s -

9. £ sklearn.neural_network HJ MLPRegresor Ei MLPClassi-
fier W{EHAEAEERIEMAH S - BHE —EEZEI2E early_stopping -
B SR - B ESE] DI SRR R4S TR - AR R4S TR AVER ok
B R ARSE IS SRR » RIHER R ESUE THERY 10 JRETE - BbHY
MR/ NS tol (FHER Ry le-4) - E{EIF EIRAFEZMRE - HEatlEE
ERRIEE » BN LAIEEERE S/ » EERE - 808 A/
iE P GRS AR 0 T B TR EEUA 4R (Over-fitting) 5 BE
EHAK > FIERGEISRATE - early_stopping = True ALEAEHSRERE
o BB ER (TEs Ry 10%) i EZ 2 (Validate) » &
ZERHVERAERE 10 JUREN IR (RINEECY) @ RIPEEDEOA
PERASH » DUBFR B ERE o I IR HVEE SRR E LA E B E R
INIHLTT o EREESESIA early_stopping = True > MiLEEIEIZHL
SRV EIETEHIRE S -

2https://www.kaggle.com/sachinpatel2 1/az-handwritten-alphabets-in-csv-format

20

