RS s R B L E

Multinomial Logistic Regression > Support Vector
Machine E'—'ji Neural Network

April 28, 2025

P EHRERNERZ "Hg) HESHSESERIMET R - LHAH
%& - BRE RER S TR B R S Y)*EM\%EKWET}&%’H%L?F;%El’ﬁsez

o B AV RE RS o AT DLBRAIEY R —(E4RET 705 » el DU RS
WARAMNE GPU HYERUE « AU M8 =FEE RAV4st 0 BUTA: 2 oniE S Blnlfw
(Multinomial Logistic Regression, MLR) ~ 7 #& aj &% (Support Vector Machine,
SVM) H{fEE4dis (Neural Network) FE5Z & BV IE A R AVAETTEPEL B B
Horp % on sk & W Bl ER 0y 0 R RITRU S BT 8T 20 R Ak e 52 e i (D U (S8 FH Y
Softmax 47 5Hz% °

A TR AR R

(KZZRFR? Python Y55 B1ZE %)

&<

sklearn.linear_model: LogisticRegression, LogisticRegressionCV
sklearn.svm: SVC, LinearSVC

sklearn.neural_network: MLPClassifier
sklearn.decomposition: PCA

sklearn.preprocessing: StandardScaler

sklearn.model_selection: train_test split

sklearn.metrics: classification report, ConfusionMatrixDisplay, accuracy score

2 U EE o Hr Bl SRHR — f MR R 2 S BT B R e Ty R Ry % oT - TR IR AU
aa R T I 2 A R AT R oK - WG HAN AR Ry BT - % &y Softmax B¢
Maximum Entropy classifier o 2% C# & Hr[mlERE R o7 Sasiy HEY > Sl —4H 25
EER x RIS IREER Z RN BCE] K (ESE R TP AR o REVER] - B
AFRER (2% (1D

Pr(G =1|X =x)
Pr(G = K|X =x)
Pr(G =2|X =x)

1 — T
OgPr(G:K]X:x) P20 + Bo X

log = P+ /61TX

Pr(G=K—-1X=x) _ .
log PrG_KX =% Bix—1y0 + Bx_1X (1)

Hrp Pr(G = k|X = x) T Ry {2 5ai#= (posterior probability) - W {E{& 5t AIEE
{EHUH R - T R B H LD (log-odds ratio) Bl #F## % (logit transformation) °
A P E R EE MO AR PEEIERRIEE S - 20 (1) "I R

€6k0+ﬁzx
PrG=kX=x) = k=12 K1,
1 + Zl:l 6’8l0+’61 X
1
PrG=K|X =x) = 2)

1+ Z{Sl eBio+8] x

= (2) FORSHEREDR x BH K EAA I - Bt K (B
B (BRI ANFIREEE - PRAESITABLL - (06 x KL R R
—f - 3 Q) BTSN IR R S B

Q = {B0,B1, 520,85, -+, Bx—-1)0, Br 1}

BEeERER x 7 p M2 M2H QF (p+ 1)(K - 1) HSEFEEEE -
SR ETAEES S8 I > 98 Ry 528 (learning) BFII4R (training) > {E
WLEE S TR ER S o RS BUEET - — AR AR ST & E Y EEURETT -
A N ELBEER x;,i = 1,2, | N » JIESERIDIREE &'

U (xi, il Q) TEER @ (EREARAUREIAR S - Kby € {1,2,-- K} -

2

Z(Q) lnHle(Xlayz|Q) (3)

T2 Teak & An BRSBTS &y

max 1() 4)

PEE > WAMPL sk-learn f2ELHYEE S BT EIERE(ERTEARRIT 2 HE - fELLZ AT -

R HANERNERES -

4 N
6l 1. sklearn $E(t T Ri{E 2% TR S HTOIERAVELE © LogisticRegres-
sion Jz LogisticRegressionCV - 9 J:2k£:% sk-learn FYFEIAFEL,
o7 # 9 AZE AR M 6 = (AT ZE Y 178 JE T A<HU Y 13 T &l sy
1R B 888 DI (EEE IR - "AEBIETELL Ny TSI
@%%%@%mi

1. FUR BRI B ERATE AR -
2. DL 13 Feia &)l a8 Ryl A EDR -
3. D13 &R 0y g 8 £ Ry Rl A&k -
EEE IR ARHY 13 TR E R RAERERY ¢ TR B 7 MR AR AR BLh,
(EESE

9L ogisticRegressionCV A B =S RkAY LogisticRegression - ERi{EHEMN-FT
i By 8t 77 2 2 m i g KM RS > 25T R #2e i PE DU S B FE 3l 4
il LogisticRegressionCV 2l TARY IR HANEL (FEFHER) -

bEAHIFEAKE sklearn 481k - DIEEFET " Importance of Feature Scaling | 75 &f) ©

- /

BT SRR - BRI ERRES ¢ Al SR B B E R - LXEJIIZBE
BRHEET AR 28 FHEET5ERE - FRUIEUE R R BRI SRaE R -
EAE I SRELHGA RS SRR AE - AIAER B S BTV ET S > B ?ﬂ?:
ARV IER - B E - . REFERERASE - FERRIRARA 2 - 8
LU R AR - BT - BURR R R B R E A AL F
HENEREAEIEH VAR IE - T =ERRE AR &SR
= e

F—Ee BEER GEAER - sEEER - R EERD

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler

3

from sklearn.model _selection import train_test _split

Read data

df = pd.read_excel(’data/Wine.xlsx”’)

X = np.array(df.iloc[:, :-11) # HEER % — A4
y = np.array(df.iloc[:, -1]) #2401

Split data into training and testing data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test _size=0.30)

Standardize data

scaler = StandardScaler()

X_train_ = scaler.fit_transform(X_train)
X_test = scaler.fit_transform(X_test)

AR AR E R BB R ZE 7y B > T IRPEAE (L& 5 5 A SR 2L A
VB R o B AR FUES R M BRI B Ry 30% » 5E & A Wl g R Ry 20% =X
25% -

B DR R Z IR E RIS E R - I DU G E RIS b

32
=

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

opts = dict(tol = le-6, max_iter = int(le6), verbose=1)
solver = ’1bfgs’ # ’lLbfgs’ is the default

solver >Liblinear’

solver = ’“newton-cg’

clf_original = LogisticRegression(solver = solver, **opts)
clf_original.fit(X_train_, y_train)

y_pred = clf _original.predict(X_test)

O e e o]
print(f”{accuracy_score(y_test,_ y pred):.2%}\n”)
print(f”{clf_original.score(X_ test ,_y test):.2%}\n”)
print(classification_report(y_test, y _pred))

s EEIEMK 2 MHE (LogisticRegression) S EfhETAYEE AR FRHVEEE
HERTRAE opts H—0FRESI « 55 » [OIHDHIEREORHE A FI 9k 52 BN 73 B3 Y 73 35
AR DI [E] G2 - Hr accuracy_score EE¥ TR ERIHVAEE:
(y_test) BpATEMNIME (y_pred) - [fii clf_original.score B #3451 AEHE

R o WMEEREEN - BB (EIES4E TSRS - FIETHE 1 > H
YRS TEFERE - 40 precision -~ recall ~ fl-score)/ E4aT%q SHEEE S BT H
EF o AN PR B R REEDE (solver) HYBETEA - HEEES
I -

\

precision recall fl-score support

0.86 1.00 .92 12
1.00 0.92 .96 24
1.00 1.00 .00 18

accuracy .96 54
macro avg .96 54
weighted avg .96 54

1 B R Sy A R

BTEL UL AR RH R Z I R 3 LT
e

from sklearn.decomposition import PCA

pca = PCA(n_components = 2).fit(X_train_)
Z train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)

opts = dict(tol = 1le-6, max_iter = int(1e6), verbose=1)
solver = ’1bfgs’ # ’lLbfgs’ is the default

solver >Liblinear’

solver = ’newton-cg’

clf PCA = LogisticRegression(solver = solver, **opts)
clf PCA.fit(Z_train, y_train)
y_pred = clf PCA.predict(Z_test)

print(f”{clf_PCA.score(Z_ test, y _test):.2%}\n”)

AEE - RAOE SRS ER R (E sy - AR — B2 =R A T 13 il A s
B o H TR Etbith - (BRI E S - 588] LUK E Ry
ZaE (B 13) - BIZEEMERNVE(L - B2 DE - REITRERILREE
(B scree plot ¥fEL) -

R sklearn fYZEEHT[OIERIES (LogisticRegression) W% » WV T
FUEARL S DERF VS A FN 2B AS B ER R - EUEE AN
ZE3E (W solver = ’1bfgs’) - {ZILIRAHIELE (tol = 1le-6, max_iter

= int(1e6)) - MIE—ORHLPRHITHERHY 28 - B R INGIISRA 2 B SR A4S
B
WIRAFA B ERFnf T By & E 2 - e —fF /NS - B R B eET st

& — I ART WER R R ES—BREEE - 5540 AT DEE
LogisticRegressionCV YRR » B4

Cs = np.logspace(-5, 5, 20)
clf_original = LogisticRegressionCV(solver = solver, \
Cs=Cs, cv=5, **opts)

LogisticRegressionCV iy CV {{FE NI A T Cross Validation (38 X E@zE) A%
B> FFEEA ¢ [H T (Cs) P g o - 2DUHE G m BE G A B 3 460y
T - f R BAEFISRERE E R N — 8y B EAE ISR AE AR YA
Bk — BB RA ML - g FE LII8 - 23 s T
A AT DL ov BEIHEHET » R4l /) 4H 55 & https://scikit-learn.org/stable/modules/

cross_validation.html o

FEAh > e EE B —E2E A EEE S (E SRV EEME - EEKEEHE
FEESHEE AN K R MR EENN R » ARAREEN S EAENE
RHERREAT SRR K » EA LS | ARRAa a2 80EE - EUUEEE solver ~ &Y
A ¢ (B, 2 EEEHY T e~ F o [HAGEEHVEREAER S —ERE - (2
R —&H BETH A 2 e (R 158452 2 A2 3R 718 sklearn $2fitfy GridSearchCV A
R TR G - BUTIREAESIH 15 140 &4 LogisticRegression i
TetE » RIe B RS -

opts = dict(tol = 1le-6, max_iter = int(le6))

parameters for GridSearchCV

parameters = {’solver’:[’lbfgs’, ’liblinear’, \

’newton-cg’, ’sag’,’saga’], °C’:[0.1, 1, 10]}

cv = StratifiedShuffleSplit(n_splits=5, test _size=0.3) # 5-fold CV

grid = GridSearchCV(estimator=LogisticRegression(**opts), \
param_grid=parameters, cv=cv,
scoring=[’accuracy’,’fl macro’], refit=”accuracy”)

grid.fit(X_train_, y_train)

cv_logistic = pd.DataFrame(data = grid.cv_results)

2{f LogisticRegression Hiffyc{Efil LogisticRegressionCV H1fY cs &\ &45 regularization
strength (XSGR) - HAY Rl M BEUA R R IE RS HRG CRIEINS) mRinAR&IR
e > c (ERFREIFIEE © cs [HAZE BT ER ¢ {HHE# Cross Validation 1977 HHkEEA (Y
cf{H - IBt/2 LogisticRegressionCV Ei LogisticRegression A N[E R -

print(grid.best_params_)
print(grid.best_score_)
print(grid.best_estimator_)

A 2. (RATFGIE T ALEE B P - BERE S NG - B
it > SeER BRI ERUN - BRIV AN ef G B AT&T Afg&Eir) -
TEHEGERLF 40 AN (B > BAI0RES BREGKNE
64 x 64 ° GAE 2 rdE STl (FE R4 (LogisticRegression
2 LogisticRegressionCV) - [MifE {453 SRAY A e &t nl oy
FoR R RI L B R R) - B SR Sy 7 R -

“S{% TR © https://github.com/daradecic/Python-Eigenfaces

/
N

~
/

6 3. [8 > {B{F F Yale Face 38 Ay 2410 5 A BG[E & » 58 A /N
192 x 168 - fHRE4E AR E G ity v [E2SE AARE > 1A
R E P E VA AR > VHBETEUE -

N\ Y,

FEAEL 2410 B2 192 x 168 = 32256 HYSEHRE > MEEHNHE RS - BE
CREE T R T EE S o B AN AT 200 [3 AR HETTERE - B R AR
32256 EEHAZ O UL - FrETE Ve SR E ESR > M ERR T ES
22 .

71~

1.2 XEO=# SVM

R A E Y R AT P — R EAR o B S 2 L — (R S A
(hyperplane) » 3

wix+b=0 (%)

Ht x REBEEE (11 22 .. .xp)" 0 (E1F (5) HVEE 1 BEAF R B BE4H 5B -
BB () SETNEFEERIEE - IR E RS B S 4y 22
M (152 ERHE S SRR BT 4y o B EES5 I AT IFGRMEZ
(kernels) » = (5) 08 B—RE =AY

344 https://codeshellme.github.io/2021/01/ml-svm1/ DISEE B & TR/ 48 SVM » {HIB&E) -

wip(x) +b=0 (6)

S w Bl b o s E A/ ME R ¢

Miny p ¢ %WTW +C Zf\il G 7
subjectto y; (Wl p(x;) +b) >1—¢;, ¢G>0

Hry, e {-1,1} » fARER x, BVERNME » BIFE1(IEJT) BI-1(&TJ7) « 1RE(E
BB AR SEE B E R (FRERFEET) > Bl yi(wio(x;) +b) > 1 -
E B AR L ESE - JENE CN, G fERBRETIE (penalty) » 1
SR EF A TEEYIE - DL G FRES « B AR EER > FARVEERE - HLEE C
TR EIEEE - —RHE R STE A IR L (BEH) 28 (regularization
parameters) » R A E ISR TR — ©

LLES SVM st LR ERR A K £ > 20 (7) PR7E T RERRU B EEAE 2 Ry 57 57 4R
(8) = ¥ % 0] (multiple classes) B33 ARIRELT AU - (ffE
A3 K {EE])

1. One vs one (ovo) : $H K (EIERIPYHT & W (EIERBIBLE —E5IEES (557
) gt KD SRS B — R X, HI5IERE -
KU AR AT T3 %o B BRSBTS
DULIBRINE By B 5 EAAS 5R -

2. One vs the rest (ovr) : B EFE @ L —EE L HE BRIV ES -
a)EEER 0 i KRR B4 - — 4 Ry TR EE M0 - B R IETT S /EE%HE
AEEFRETT > WL — e (0548 - BEHHHTERE > F
ST BRI BRI RE - BEI[E 5y - QIR SR M 28 R -
sk-learn DL ovr fE B TEE(E -

sk-learn E{FEAL T 24(H SVM AYEE 5L » 41 SVC, LinearSVvC, NuSVC -
SHR DL SVCEREHHER - USRS EDL SvC BT -

4% sk-learn BRI SYM HY/4E : https://scikit-learn.org/stable/modules/
svm.html#tsvm-classification -

SSVC Bl NuSVC B2 e BFAHE KL > SR B (decision function) AYEEFEA FifE @ —
B—¥HAr (one-vs-rest) > Bl Fyfg—BF4H LAY 73 FL4R & DL B 4H 2 30 7E R v > H
Ty THEEBETE » — ~ f8—¥— (one-vs-one) 734752 Bl By — (I8 B 4H B0 7 17 B L Al & 70 B
SHEVEEF IS4 5 i LinearSVC RIEER—¥ HAMAVEE S « 3EE 1T DI SV Y28
decision_function_shape=’ovo’ » tEfigz—¥f— (ovo) EL—¥1H A (ovr) RIFEMERAIFEIR -

4)
g6l 4. FIF SvC EfERTMEFIN =4HER » Bl LogitRegression
AGEF—REM - st 2 A E RIS ELRIEN &R o B E RE 704
HIBE S B -

. J

DUMEAS R SvC HIAI A ¢

from sklearn.svm import SVC, LinearSVC

C =1 # SVM regularization parameter

opts = dict(C = C, tol = le-6, max_iter = int(le6))

opts = dict(C = C, decision_function_shape = ’ovo’, \
tol = le-6, max_1iter = 1int(le6))

clf_svm = SVC(kernel="”1inear”, **opts)

clf _svm = SVC(kernel="rbf”, gamma=6.2, **opts)

clf_svm SVC(kernel="poly”, degree=3, gamma="auto”, **opts)
clf _svm LinearSVC(**opts) # one vs the rest

clf svm.fit(X_train, y train)

predictions = clf_svm.predict(X_test)
print(classification_report(y_test, predictions))

SVC FH Y kernel i& rbf(radial basis function) » 554N g A H A 5 IEH » 404 IH
ploy, sigmoid 55 - SEE R DI T E R - HEIRAEGHIAHE - =005 5 7 g
AETFERRIE - NILBRFH SR c1f_svm (TR SVM 1Y 588 » FEEH
R tEiZ e S BTy s rl DA c1F_LR DIFE R -

1.3 L4 (Neural Network)

SEARFTTE R HAC SRS R (EARATATEE T (feedforward) /g EiAIES (Multi-Layer
Perception, MLP) - [fij5/E H AT FEELE (o A A iz > 40 CNN IS S 5 AR R
BERHIZSE - 8 2 Jon B — (RS R iy s i S O e A 4l » O HL 5 (7R
W EAET R /i A (Input) BRFy p (EEREEE (BT p=14) > PR
feljg (Hidden Layer) A ¢ (E#&ET (BT ¢ = 10) KEAENETE (Output
Layer) - 34 r (Bt S8 (B r = 3) - i A B H S BE S p, r REERY
SfEIE > B ARRHEE - Al p AREEEVRN (BB THIRAN) > r
FERPERAVE - S —ierVE T ErVbeE e g - Rl 2R g
EAFT S AT R ¢ - g BOK > (TR HH Bl A 2 FRIAYRBE (Rl e > (e 82 Bd
(RHYAEEAGR - R IR IR VIR R

O MATLAB #ifiH}

Hidden Layer Output Layer

Input Qutput
14 3

10 3 r
P q

2: Bl e g iy s R pip el U p e AL i

(B asc A Y p (B BRERR By v, 20, 2 B HIGHY r (B2 BRI R
91, G2, -, G > FUEDEAUEALAEES e H Bl A FEIAYEER BRI (R BT Ak

q p
e =Y wig (Z wha; + b}) +0p, 1<k<r (8)
i=1 j=1

Hopr o) T8 RS Es k8 (activation function) » "RILDIEEFE By (—1 < g(2) <
1)

| — gz
ltees
R g(2) HYRARGEANE 2 HYFR el Frég Ry er s - e g(2) AT LAFIAE
Wt g o DI NIEREE » A (8 e 2 AVERMERE y = = > ElE 2 /Y
AT E R ITRER o 3 Q) PHY wi; B o) R —(ERRUERYE | (&
TCELER j (W ARIREER (B (Weightings) B[{(% %L (Biases) o [EfEHT > wi;
B 07 AR g (Rt Rt g) MEE b (EhaCoT BT — R =iy as o (E
FHE B (A B L PE (RH -

B AR AR R A L80 LD () B () » SRR), w}, b) B
b o (S ELEEEORE y(n) BUSHBEABRRIR L ZORE Gu(n) HUBE B/ D - BERAER
N SR - TGRSR PSR - SRk RO R M R
il

9(z) =)

min e(Q) (10)

TR o B R F 5 E b AR SR 2 B A AR A BRI - B R B L S R P
R > R IR L A Y LA P AR - B eR B R AR B AL A IR RE - (P AR
RS e B E] - LR RIS A TET) - A LRI ZBEIS AT —(EBRRE - JERHEIGE - fEREEE
FYFHER RIS - B PSS el S50 R relu bR > RAHATIASE (9) HY sigmoid bR » 72 BITEF AP
FEIRSRVERR Iy B pcaR 1 - DAL (B I Aty F R AR MRS - RS RGNt - /I B ke
AR AR BRI -

10

Hi B4 8 (loss function) 8

e(Q) = ZZ (ys(n) — Gu(n))*

n=1 k=1
N T q p 2
= 3 (wo- Yot (Subs it)
n=1 k=1 i=1 j=1
HP 28 Q = {wi), wi, b, 0 Yim1.2, =12 pk=1.2- 0 * T pg 4+ qr + g+ [l

B - 5 LAE] 2 AR RS R (p = 14,¢ = 10,7 = 3) Rl > 20 (10) VR
8 e(Q) HYSEIL 183 (] - [NBLIATHAE RS i 5 Ry — (B R 40 ~ JRRIERRETR
=g - e A (X)) Bt (Y) HIBIAECERIRES: -

sk-learn ﬂﬂ%ﬁﬂiﬁﬁé§##¢§ MLPRegressor Ei MLPClassifier s 43 7 7E i

C i Ay 2 SR R BB R AU 8B 8 o DU 2 R AV E f5 E L MLPClassifier fy

¥ o

4)
26 5. DL MLPClassifier E{ERTMEFINY =4HER} - I8l LogitRe-
gression, SVCGHI—#EM - tatE st A EHY3ISREDRIEVE K - BiE2
B A EANMES SR -

. J

DU 200 fy BRIy MLPClassifier (R ¢

from sklearn.neural network import MLPClassifier

hidden_Llayers = (512,) # one hidden Llayer

activation = ’relu’ # the default

hidden_layers = (390,)

activation = ’logistic’

opts = dict(hidden_layer_sizes = hidden_layers, verbose = True, \
activation = activation, tol = 1le-6, max_iter = int(le6))

solver = ’sgd’ # not efficient, need more tuning

solver = ’Lbfgs’ # not suitable here

solver = ’adam’ # default solver

clf_MLP = MLPClassifier(solver = solver, **opts)

clf MLP.fit(X_train, y_train)

8Loss function B4R H W EA MG - —UVEGHE 2L THE - B loss function fYFEA
Blar 2% E M EAY/ 47 ¢ https://chih-sheng-huang82 1. medium.com/f8 &3 /75 & B2 35 FL i /)
48-187% el #-loss-function-2dcac5ebboeb o F B » 4856 pr i 22 ¥R HL B iy o (B B R iy tE (B Y 22
%o HESE LB > B [EIFE SRS EIEG kB o EI RS (E fy s gl
R HRTRE o EAUERI R Y SRR > VIR e S X (cross-entropy) 0
IR & RATAREENE o ASCLUERIHER BT SRANESHEREEN MLPClassifier HY1E
I PR A Fy softmax > HE A2 XM+ AR 25 e 48 75 B (o] By S SOtL B50E F A — 20 o
17 > BB BIRERE = B Y cross-entropy (£:7% https://en.wikipedia.org/wiki/Cross_entropy) °

11

predictions = clf_MLP.predict(X_test)
print(classification_report(y_test, predictions))

THARAERS AR L T B | UMt TR - B IRERENVEE - SEREE e TE
B RV EERE (relu, logistic, tanh) ~ JEBEUARYEEE (adam, Ibfgs, sgd,...)
RENER T REREAE G - BEESEEENIISOSRFEEEIE - R
HERINE SR BRI T E R AL T R THEEN RS EUEEEY
PN THERHY relu I - T AR SR FEERE A4S T ZEAH 7Y logistic 2086 » (R Fy
relu 2T SR ML R BUETTE - PR (RBE (E AR Y IR GR R % BEZRTT DUBE TR 28 i
FI4k - AH BRI PARIERTE FERA (G - FEZ YT A sE S T 82E , iVH
(Y o Frbd a2 =0 A —4HEE#ERY hidden_layer = (512,) Bl activation
= ’relu’ - (FREFREETEH - 2NFEL/VERERIE T4 ? B2 SEREE
TEL /DM T ? WHEBAEERENER A AR JUEESE
SEIFR T - R RIS IR B -

S50 » WRRUERE B Bt (RIS » BB loss function e((2) AUMERUEEFEETS
st (19922 » 0L 3 -

Training Loss Curve

Fitting Loss
w

0 200 400 600 800 1000 1200 1400
Iter.

3: loss function e(€2) [8 HHY R AT 220 53 [NH S 55

WRFHIABRZ > A LL4EHL confusion matrix 2R ER 22— (EFH I 4 o3 JH A 48
WERE - #EI T AR ELSE B BGZ M R B R R Ik 2 B - DARUGS RS FERT 5R
FEER R o B {EFRAL T AU] DAL AR EE = o T - BUEE 4 VTR
HEAIT

12

from sklearn.metrics import ConfusionMatrixDisplay

fig, ax = plt.subplots(1l, 1, figsize=(12,12))
score = 100*clf_MLP.score(X_test, y_test)
title = ’Testing,score ={:.2f}%’.format(score)
disp = ConfusionMatrixDisplay.from_estimator(

clf MLP,

X _test,

y_test,

xticks_rotation=45, #’vertical’,

display_Llabels=class_names,

cmap=plt.cm.Blues,

normalize=’true’,

ax = ax

)

disp.ax_.set_title(title)
plt.show()

References

[1] T. Hastie, R. Tibshirani, J. Friedman, ”The Elements of Statistical Learning : Data

Mining, Inference, and Prediction”.

13

10
0.8
0.6

0.4

0.2

0.0

92.50%

Testing score

0200000200200 00000002000000000000000O0O000O00200
1{Opgo0 00 000000000D0000000D0000O0O0CO0O0DO00O0O0O0OODOOOGO OO
2q00pgoO0OO00OO0OO0OOOOODOOOOOODOOOOOOOOOQOOOOOOOQOOOO
3{j00OpPgOOO0OO0O0OO0OO0OOODODOOODOOODOOOOOOQOOOQOOQOQOQOOOOQOOOO
4400 0030000000000000000000000O0O0O0ODO0O0OO00330 000
500 000CpO O OOOOODOD0O00O00ODO00O0D000O000O0O00O0O0ODOO0OO0OOOOO0
6{0 000000 0000000000000 0O0O0OODOO0ODO0O0Q0O0C0QO0CO0OO0OOQOOOO
70000000 000000000025000000000000000000000O00O0
8{00000000QOO0OO0O000O000OODOO0ODOO0ODO0OO0ODOO0OO0OOODOO
940000000000 0OO0ODO0O0O0OOOO0DOO0OO0OO0O0OOOQQOODOQOOOOOQOOODOOQO
104000000000 C0CQKO 0000000000000 0QO0OO0OQO0OO0O0COO0QOODOODODODO
11400 000000000000 0000000000O000OD0O00O0O0CO0O0OOOOOODO
124000000330 000004 0000000000000000000O0O0O0O0O0OO0OO
1340000000000000pggO00000C0O0OD0CO0O0OD0O0C0O0OD0O0O00O0CQO0OO0ODOODODODO
1440000000000 0000QRRO0000000000000000000000O0O00O0
154000 0000000000 O0O0KHO 0000000330 0000000000000O00O0
16400 00000000000000OpPpOOOO0OO0O0O0O0C0O0OD0O0O0O0OO0COODOODODODO
17400 000000000000000CQPYO0OO0OO0O0O0O0O0O0Q0OO0ODO0OO0OO0QCOO0QOOQOODODODO
18400 0000000000000000pgO0 0000000000000 0000O0O00O
19400 000000000000000O0OCQROO00O00O00O000O0D00O0CO0O0O0ODOO0OOO
20000 00000000000000000pgO O0O00O00O0OO0O0O00O0O0O0O0OO0OO0OO0OODOO
21q{00000000000000000250 00 O0N000000000000000O00O00
224000 0000000000000000000QYg00000000000000O00O0O0
23400000000000000000000O0O0OKRO0000000000000DO0OO0

|2qe] aniL

24400000000000000000000000O0pYO 0000000000 0O0ODOOD0

25q0000000000000000000000000g0 0 000000000O00O00O0
26000 0000000000000000000O0O0O0CO0CRO000000000O0O0O0

279400 0000000000000000000000000pPgOO00000O0OO0OO0ODO0OODOO

28q000000000000000000000000000C0ggO0000000O0OD0CD0

294000000000000000000000000000O0O0QRY0000000O00O00O0

30q4000000000000000000O00DO0O0O0DO00O0O0O0OORRO 0 0000O0O0O0

31{000000000000000000000000000000O0pPRO00000O0OD0OD0

3240000000000 00000000000000000000O0O0QRg00 00000

33q000000000000000000000000000000O0O0O0QRO000O0O00O0

344q00000000000000000000000000000000O06OpPYOO0OO0OODOO0

3540000000000 000000000000000000000000O0QEY4O0 0 OO0

3F400000000000000000000000000000000O0O0O0O0pPY0 0O

3¥y{00000000000000000000O0O0O0DO00O0O0O0O0O0DO0O0O0OOOORYO 0

383q0000000000000000000000000000000000000O0QYO

3340000000000 0000000000000000000000O0000O0O0 Oy

Predicted label

#EHAY confusion matrix o

HIEE

7

= 4

14

