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sklearn.linear_model: LogisticRegression, LogisticRegressionCV
sklearn.svm: SVC, LinearSVC

sklearn.neural_network: MLPClassifier
sklearn.decomposition: PCA

sklearn.preprocessing: StandardScaler

sklearn.model_selection: train_test split

sklearn.metrics: classification report, ConfusionMatrixDisplay, accuracy score
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import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
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from sklearn.model _selection import train_test _split

# Read data

df = pd.read_excel(’data/Wine.xlsx”’)

X = np.array(df.iloc[:, :-11) # HEER % — A4
y = np.array(df.iloc[:, -1]) #2401

# Split data into training and testing data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test _size=0.30)

# Standardize data

scaler = StandardScaler()

X_train_ = scaler.fit_transform(X_train)
X_test = scaler.fit_transform(X_test)
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from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

opts = dict(tol = le-6, max_iter = int(le6), verbose=1)
solver = ’1bfgs’ # ’lLbfgs’ is the default

# solver >Liblinear’

# solver = ’“newton-cg’

clf_original = LogisticRegression(solver = solver, **opts)
clf_original.fit(X_train_, y_train)

y_pred = clf _original.predict(X_test )

# O e e o ]
print(f”{accuracy_score(y_test,_ y pred):.2%}\n”)
print(f”{clf_original.score(X_ test ,_y test):.2%}\n”)
print(classification_report(y_test, y _pred))
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precision recall fl-score support

0.86 1.00 .92 12
1.00 0.92 .96 24
1.00 1.00 .00 18

accuracy .96 54
macro avg .96 54
weighted avg .96 54

1 B R Sy A R

BTEL UL AR RH R Z I R 3 LT
e

from sklearn.decomposition import PCA

pca = PCA(n_components = 2).fit(X_train_)
Z train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)

opts = dict(tol = 1le-6, max_iter = int(1e6), verbose=1)
solver = ’1bfgs’ # ’lLbfgs’ is the default

# solver >Liblinear’

# solver = ’newton-cg’

clf PCA = LogisticRegression(solver = solver, **opts)
clf PCA.fit(Z_train, y_train)
y_pred = clf PCA.predict(Z_test)

print(f”{clf_PCA.score(Z_ test, y _test):.2%}\n”)
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Cs = np.logspace(-5, 5, 20)
clf_original = LogisticRegressionCV(solver = solver, \
Cs=Cs, cv=5, **opts)

LogisticRegressionCV iy CV {{FE NI A T Cross Validation (38 X E@zE ) A%
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opts = dict(tol = 1le-6, max_iter = int(le6))

# parameters for GridSearchCV

parameters = {’solver’:[’lbfgs’, ’liblinear’, \

’newton-cg’, ’sag’,’saga’], °C’:[0.1, 1, 10]}

cv = StratifiedShuffleSplit(n_splits=5, test _size=0.3) # 5-fold CV

grid = GridSearchCV(estimator=LogisticRegression(**opts), \
param_grid=parameters, cv=cv,
scoring=[’accuracy’,’fl macro’], refit=”accuracy”)

grid.fit(X_train_, y_train)

cv_logistic = pd.DataFrame(data = grid.cv_results )
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strength (XSGR ) - HAY Rl M BEUA R R IE RS HRG CRIEINS) mRinAR&IR
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print(grid.best_params_)
print(grid.best_score_)
print(grid.best_estimator_)
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1.2 XEO=# SVM
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from sklearn.svm import SVC, LinearSVC

C =1 # SVM regularization parameter

opts = dict(C = C, tol = le-6, max_iter = int(le6))

# opts = dict(C = C, decision_function_shape = ’ovo’, \
# tol = le-6, max_1iter = 1int(le6))

clf_svm = SVC(kernel="”1inear”, **opts)

# clf _svm = SVC(kernel="rbf”, gamma=6.2, **opts)

# clf_svm SVC(kernel="poly”, degree=3, gamma="auto”, **opts)
# clf _svm LinearSVC(**opts) # one vs the rest

clf svm.fit(X_train, y train)

predictions = clf_svm.predict(X_test)
print(classification_report(y_test, predictions))

SVC FH Y kernel i& rbf(radial basis function) » 554N g A H A 5 IEH » 404 IH
ploy, sigmoid 55 - SEE R DI T E R - HEIRAEGHIAHE - =005 5 7 g
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Hi B4 8 (loss function ) 8

e(Q) = ZZ (ys(n) — Gu(n))*

n=1 k=1
N T q p 2
= 3 (wo- Yot (Subs it )
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from sklearn.neural network import MLPClassifier

# hidden_Llayers = (512,) # one hidden Llayer

# activation = ’relu’ # the default

hidden_layers = (390,)

activation = ’logistic’

opts = dict(hidden_layer_sizes = hidden_layers, verbose = True, \
activation = activation, tol = 1le-6, max_iter = int(le6))

# solver = ’sgd’ # not efficient, need more tuning

# solver = ’Lbfgs’ # not suitable here

solver = ’adam’ # default solver

clf_MLP = MLPClassifier(solver = solver, **opts)

clf MLP.fit(X_train, y_train)

8Loss function B4R H W EA MG - —UVEGHE 2L THE - B loss function fYFEA
Blar 2% E M EAY/ 47 ¢ https://chih-sheng-huang82 1. medium.com/f8 &3 /75 & B2 35 FL i /)
48-187% el #-loss-function-2dcac5ebboeb o F B » 4856 pr i 22 ¥R HL B iy o (B B R iy tE (B Y 22
%o HESE LB > B [EIFE SRS EIEG kB o EI RS (E fy s gl
R HRTRE o EAUERI R Y SRR > VIR e S X (cross-entropy ) 0
IR & RATAREENE o ASCLUERIHER BT SRANESHEREEN MLPClassifier HY1E
I PR A Fy softmax > HE A2 XM+ AR 25 e 48 75 B (o] By S SOtL  B50E F A — 20 o
17 > BB BIRERE = B Y cross-entropy (£:7% https://en.wikipedia.org/wiki/Cross_entropy ) °
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predictions = clf_MLP.predict(X_test)
print(classification_report(y_test, predictions))

THARAERS AR L T B | UMt TR - B IRERENVEE - SEREE e TE
B RV EERE (relu, logistic, tanh ) ~ JEBEUARYEEE (adam, Ibfgs, sgd,...)
RENER T REREAE G - BEESEEENIISOSRFEEEIE - R
HERINE SR BRI T E R AL T R THEEN RS EUEEEY
PN THERHY relu I - T AR SR FEERE A4S T ZEAH 7Y logistic 2086 » (R Fy
relu 2T SR ML R BUETTE - PR (RBE (E AR Y IR GR R % BEZRTT DUBE TR 28 i
FI4k - AH BRI PARIERTE FERA (G - FEZ YT A sE S T 82E , iVH
(Y o Frbd a2 =0 A —4HEE#ERY hidden_layer = (512,) Bl activation
= ’relu’ - (FREFREETEH - 2NFEL/VERERIE T4 ? B2 SEREE
TEL /DM T ? WHEBAEERENER A AR JUEESE
SEIFR T - R RIS IR B -

S50 » WRRUERE B Bt (RIS » BB loss function e((2) AUMERUEEFEETS
st (19922 » 0L 3 -

Training Loss Curve

Fitting Loss
w
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3: loss function e(€2) [ 8 HHY R AT 220 53 [NH S 55

WRFHIABRZ > A LL4EHL confusion matrix 2R ER 22— (EFH I 4 o3 JH A 48
WERE - #EI T AR ELSE B BGZ M R B R R Ik 2 B - DARUGS RS FERT 5R
FEER R o B {EFRAL T AU ] DAL AR EE = o T - BUEE 4 VTR
HEAIT
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from sklearn.metrics import ConfusionMatrixDisplay

fig, ax = plt.subplots(1l, 1, figsize=(12,12))
score = 100*clf_MLP.score(X_test, y_test)
title = ’Testing,score ={:.2f}%’.format(score)
disp = ConfusionMatrixDisplay.from_estimator(

clf MLP,

X _test,

y_test,

xticks_rotation=45, #’vertical’,

# display_Llabels=class_names,

cmap=plt.cm.Blues,

normalize=’true’,

ax = ax

)

disp.ax_.set_title(title)
plt.show()
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